-
单分子检测代表分子检测灵敏度的极限, 能够提供传统检测方式无法提供的物理信息, 在化学分析、分子动力学机理、蛋白质解析等领域具有广阔的应用前景, 具有重要的科学研究价值. 具体而言, 单分子检测能对复杂体系中的分子进行识别和计数, 给出分子的分布信息; 也可以对单个分子在吸附、反应等过程中的实时衍变进行追踪, 研究分子动力学的内在机制. 单分子表面增强拉曼散射是单分子检测领域最近兴起的一门新方法, 其特色在于具有特异性分子识别能力, 可以提供分子成键变化等动态信息. 这种方法适用于研究分子的演化过程、分子与环境的电荷相互作用, 从而揭示分子的反应途径、分布状态、吸附方式、电荷交换等重要信息. 单分子表面增强拉曼散射的概念提出较早, 但是缺乏高效的采集方法和精确的判定依据, 本文将对采集方法的优化进行梳理分析, 从非统计学和统计学两个角度对其进行讨论, 并重点对双分子分析检测法做详细介绍. 另一方面, 由于单分子表面增强拉曼散射研究涉及各种交叉学科、内涵广泛, 相关研究需要对光谱背后的相关机制有深刻的理解和认识. 为此, 本文基于当前的相关研究工作, 从分子漂移、光谱闪烁及展宽等特有现象入手, 分析了单分子表面增强拉曼散射的波动特征及其对应的物理机制, 并对其应用前景做了简要探讨.Single-molecule detection (SMD), which represents the detection limit in molecular spectroscopy, has opened a new research realm in the fields of catalysis, DNA sequencing and protein analysis. Meanwhile, it provides new insights into the understanding of the molecule behaviors in a complex system. Specifically, SMD enables the quantitatively identifying of molecules accurate to single digit, provides the molecular distribution state under specific environments, and permits the in-situ observation of signal fluctuations of a single-molecule under chemical stimulus. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) is a new subject in SMD which features specific recognition of molecules by identifying the molecular chemical bonds. It is a non-destructive technology which reflects the vibration energy and rotational energy information of molecules. This technique employs metallic nanostructures to form surface plasmon resonances (SRP) under external excitation. The SPRs generate strong local electromagnetic fields ("hot spots") around metal surface to amplify the Raman signal of probe molecules in the vicinity of plasmonic materials. The giant field enhancement endows SERS superior sensitivity in trace molecule detection down to a single-molecule level. The SM-SERS offers a facile method to track the evolution of a single molecule, revealing the reaction pathways, adsorption state and distributions, and charge exchanges between the molecule and surrounding environment. Though SM-SERS has been proposed more than 20 years ago, the acquisition of SM-SERS spectra remains a bottleneck in this field due to the disability in judging the origins of these spectra. On the other hand, the lack of knowledge in analyzing SM-SERS spectra also limits the development of SM-SERS as the origins of molecule behavior at a micro level is basically unknown to the public. This review paper covers the development of SM-SERS, the past and current methods of verifying SM-SERS including the non-statistical and the bi-analyte statistical methods, the investigation into the understanding of the fluctuation characteristics of SM-SERS, as well as the related mechanisms with regard to the unique phenomena in SM-SERS such as molecule diffusion, spectral blinking and broadening. We hope this review can help the readers to relate the characteristics in SM-SERS with the origins of molecular variations during the detection, in this way to get a clear and in-depth understanding of the roadmap for SM-SERS.
-
Keywords:
- single-molecule detection /
- surface-enhanced Raman spectroscopy /
- surface plasmon /
- bi-analyte








下载: