搜索

x
中国物理学会期刊

GaN肖特基二极管的正向电流输运和低频噪声行为

CSTR: 32037.14.aps.70.20201467

Forward current transport and noise behavior of GaN Schottky diodes

CSTR: 32037.14.aps.70.20201467
PDF
HTML
导出引用
  • 首先测量了GaN肖特基二极管的正向变温电流-电压特性, 研究了其电流输运机制, 然后分析了在不同注入电流条件下的低频噪声行为. 结果表明: 1) 在正向高电压区, 热发射机制占主导, 有效势垒高度约为1.25 eV; 2) 在正向低偏压区(V < 0.8 V), 与位错相关的缺陷辅助隧穿电流占主导, 有效势垒高度约为0.92 eV (T = 300 K); 3) 在极小电流(I < 1 μA)和极低频率 (f < 10 Hz)下, 洛伦兹型噪声才会出现; 电子的渡越时间取决于多个缺陷对电子的不断捕获和释放过程, 典型时间常数约为30 ms (I = 1 μA); 4)在更高频率和电流下, 低频1/f噪声占主导; 电流的输运主要受到势垒高度的随机波动的影响, 所对应的系数约为1.1.

     

    In this work, we first measure the forward temperature-dependent current-voltage (T-I-V) characteristics of the GaN-based Schottky diodes grown on the bulk GaN substrates, and then study the transport mechanisms of the forward current and the low-frequency current noise behaviors under various injection levels. The results are obtained below. 1) In a forward high-bias region the thermionic emission current dominates, and the extracted barrier height is about 1.25 eV at T = 300 K, which is close to the value measured by capacitance-voltage sweeping. 2) In a forward low-bias region (V < 0.8 V) the current is governed by the trap assist tunneling process, having an ideality factor much larger than 1, and the derived barrier height is about 0.92 eV at T = 300 K, which indicates that the conductive dislocation should be mainly responsible for the excessive leakage current, having a reduced barrier around the core of dislocations. 3) The Lorentzian noise appears only at very small current (I < 1 μA) and low frequency (f < 10 Hz), whose typical time constant is extracted to be about 30 ms, depending on the multiple capture and release process of electrons via defects. 4) At a higher frequency and current, the low-frequency 1/f noise becomes important and the corresponding coefficient is determined to be about 1.1, where the transport is affected by the random fluctuation of the Schottky barrier height.

     

    目录

    /

    返回文章
    返回