-
超弹性材料是工程实际中常用的材料, 具有很强的非线性力学性能. 将超弹性材料应用于入水问题是一个新的跨学科研究方向. 与传统的刚性球体入水现象不同, 超弹性球体入水后极易发生变形. 为了探究该大变形的入水流固耦合问题, 本文采用高速摄像方法, 对超弹性球体垂直入水问题开展实验研究. 基于实验结果, 对比分析了球体材料属性和入水冲击条件对入水空泡流动及球体变形行为的影响. 实验结果表明, 超弹性球体入水后产生嵌套空泡现象的条件是需要足够大的入水冲击条件和小的材料剪切模量. 嵌套空泡产生和保持的时间与球体的剪切模量和直径有关. 超弹性球体的入水位移及其形成空泡的长度随入水冲击速度和剪切模量的增大而增大, 却随球体直径的增大而减小. 入水冲击速度的增加只会加剧球体的变形程度, 而不影响嵌套空泡的产生时刻. 同时, 本文对球体的变形行为随弗劳德数和剪切模量与水动力之比的变化特性进行了描述与研究.Hyperelastic materials, which have strong nonlinear mechanical properties, are commonly used in the engineering field. The application of hyperelastic materials to the water entry problem is a new interdisciplinary research topic. Unlike the water entering into a traditional rigid sphere, the hyperelastic sphere is very easy to deform during water entry. In order to explore the fluid-structure coupling problem with large deformations during water entry, a high-speed camera is used to study the problem of vertical water entering into hyperelastic sphere in this paper. Based on the experimental results, the effects of the material properties and impacting conditions on the cavity flow and sphere deformation behaviors during water entry are compared and analyzed. The experimental results show that the formation of the nested cavity after impacting a free surface of the hyperelastic sphere needs large enough impact conditions and small material shear modulus. The time for the nested cavity to be formed and retained during water entry is related to the material shear modulus and sphere diameter. The sphere displacement and length of cavity formed by the hyperelastic sphere increase with the increase of the impact velocity and material shear modulus, but decrease with the increase of the diameter of the sphere. The increase of the impacting velocity can only aggravate the deformation behaviors of the hyperelastic sphere, but does not affect the formation moment of the nested cavity. In addition, the characteristics for the deformation behaviors of the hyperelastic sphere to vary with the Froude number and the dimensionless ratio of material shear modulus to impacting hydrodynamic pressure are described and studied.
-
Keywords:
- hyperelastic spheres /
- water entry /
- nested cavity /
- deformation
[1] Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar
[2] Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar
[3] Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar
[4] Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar
[5] Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar
[6] Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar
[7] Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347
[8] Wood R W 1909 Science 29 464Google Scholar
[9] Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar
[10] Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar
[11] May A 1952 J. Appl. Phys. 23 1362Google Scholar
[12] Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar
[13] Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar
[14] Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70
[15] Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar
[16] 何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701Google Scholar
He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar
[17] 施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar
Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar
[18] 李佳川, 魏英杰, 王聪, 邓环宇 2016 物理学报 65 204703Google Scholar
Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar
[19] 李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar
Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar
[20] 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150
Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150
[21] Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar
[22] Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar
[23] Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar
[24] Truscott T T, Techet A H 2006 Phys. Fluids 18 4173
[25] Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar
[26] Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67
[27] Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar
[28] Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25
[29] Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011
[30] 孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[31] Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar
-
-
[1] Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar
[2] Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar
[3] Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar
[4] Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar
[5] Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar
[6] Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar
[7] Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347
[8] Wood R W 1909 Science 29 464Google Scholar
[9] Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar
[10] Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar
[11] May A 1952 J. Appl. Phys. 23 1362Google Scholar
[12] Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar
[13] Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar
[14] Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70
[15] Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar
[16] 何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701Google Scholar
He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar
[17] 施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar
Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar
[18] 李佳川, 魏英杰, 王聪, 邓环宇 2016 物理学报 65 204703Google Scholar
Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar
[19] 李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar
Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar
[20] 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150
Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150
[21] Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar
[22] Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar
[23] Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar
[24] Truscott T T, Techet A H 2006 Phys. Fluids 18 4173
[25] Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar
[26] Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67
[27] Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar
[28] Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25
[29] Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011
[30] 孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[31] Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar
计量
- 文章访问数: 6359
- PDF下载量: 119
- 被引次数: 0