搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿色环保化学机械抛光液的研究进展

郜培丽 张振宇 王冬 张乐振 徐光宏 孟凡宁 谢文祥 毕胜

引用本文:
Citation:

绿色环保化学机械抛光液的研究进展

郜培丽, 张振宇, 王冬, 张乐振, 徐光宏, 孟凡宁, 谢文祥, 毕胜

Research progress of green chemical mechanical polishing slurry

Gao Pei-Li, Zhang Zhen-Yu, Wang Dong, Zhang Le-Zhen, Xu Guang-Hong, Meng Fan-Ning, Xie Wen-Xiang, Bi Sheng
PDF
HTML
导出引用
  • 原子级加工制造是实现半导体晶圆原子尺度超光滑表面的有效途径. 作为大尺寸高精密功能材料的原子级表面制造的重要加工手段之一, 化学机械抛光(chemical mechanical polishing, CMP)凭借化学腐蚀和机械磨削的耦合协同作用, 成为实现先进材料或器件超光滑无损伤表面平坦化加工的关键技术, 在航空、航天、微电子等众多领域得到了广泛应用. 然而, 为了实现原子层级超滑表面的制备, CMP工艺中常采用的化学腐蚀和机械磨削方法需要使用具有强烈腐蚀性和高毒性的危险化学品, 对生态系统产生了不可逆转的危害. 因此, 本文以绿色环保高性能抛光液作为对象, 对加工原子量级表面所采用的化学添加剂进行分类总结, 详尽分析在CMP过程中化学添加剂对材料表面性质调制的作用机理, 为在原子级尺度下改善表面性质提供可参考的依据. 最后, 提出了CMP抛光液在原子级加工研究中面临的挑战, 并对未来抛光液发展方向作出了展望, 这对原子尺度表面精度的进一步提升具有深远的现实意义.
    Atomic-scale fabrication is an effective way to realize the ultra-smooth surfaces of semiconductor wafers on an atomic scale. As one of the crucial manufacturing means for atomically precise surface of large-sized functional materials, chemical mechanical polishing (CMP) has become a key technology for ultra-smooth and non-damage surface planarization of advanced materials and devices by virtue of the synergetic effect of chemical corrosion and mechanical grinding. It has been widely used in aviation, aerospace, microelectronics, and many other fields. However, in order to achieve ultra-smooth surface processing at an atomic level, chemical corrosion and mechanical grinding methods commonly used in CMP process require some highly corrosive and toxic hazardous chemicals, which would cause irreversible damage to the ecosystems. Therefore, the recently reported green chemical additives used in high-performance and environmentally friendly CMP slurry for processing atomically precise surface are summarized here in this paper. Moreover, the mechanism of chemical reagents to the modulation of materials surface properties in the CMP process is also analyzed in detail. This will provide a reference for improving the surface characteristics on an atomic scale. Finally, the challenges that the polishing slurry is facing in the research of atomic-scale processing are put forward, and their future development directions are prospected too, which has profound practical significance for further improving the atomic-scale surface accuracy.
      通信作者: 张振宇, zzy@dlut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0703400)资助的课题
      Corresponding author: Zhang Zhen-Yu, zzy@dlut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0703400)
    [1]

    Liao Z R, Abdelhafeez A, Li H N, Yang Y, Diaz O Z, Axinte D 2019 Int. J. Mach. Tools Manuf. 143 63Google Scholar

    [2]

    Chappert C, Bernas H, Ferre J, Kottler V, Jamet J P, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H 1998 Science 280 1919Google Scholar

    [3]

    Krishnan M, Nalaskowski J W, Cook L M 2010 Chem. Rev. 110 178Google Scholar

    [4]

    Zhong Z W 2020 Int. J. Adv. Manuf. Technol. 109 1419Google Scholar

    [5]

    Frank B, Kahl P, Podbiel D, Spektor G, Orenstein M, Fu L, Weiss T, Hoegen M H, Davis T J, zu Heringdorf F J M 2017 Sci. Adv. 3 1700721Google Scholar

    [6]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594Google Scholar

    [7]

    Zhang S J, Zhou Y P, Zhang H J, Xiong Z W, To S 2019 Int. J. Mach. Tools Manuf. 142 16Google Scholar

    [8]

    Guo X G, Yuan S, Huang J X, Chen C, Kang R K, Jin Z J, Guo D M 2020 Appl. Surf. Sci. 505 144610Google Scholar

    [9]

    Yuan S, Guo X G, Huang J X, Gou Y J, Jin Z J, Kang R K, Guo D M 2020 Tribol. Int. 148 106308Google Scholar

    [10]

    Qin C J, Hu Z H, Tang A M, Yang Z P, Luo S 2020 Wear 452–453 203293Google Scholar

    [11]

    Zhang Z F, Yan W X, Zhang L, Liu W L, Song Z T 2011 Microelectron. Eng. 88 3020Google Scholar

    [12]

    Xu W H, Cheng Y Y, Zhong M 2019 Microelectron. Eng. 216 111029Google Scholar

    [13]

    Werrell J M, Mandal S, Thomas E L H, Brousseau E B, Lewis R, Borri P, Davies P R, Williams O A 2017 Sci. Technol. Adv. Mater. 18 654Google Scholar

    [14]

    Lin Z C, Wang R Y, Ma S H 2018 Tribol. Int. 117 119Google Scholar

    [15]

    Sanusi N F A M, Yusoff M H M, Seng O B, Marzuki M S, Abdullah A Z 2018 J. Membr. Sci. 548 232Google Scholar

    [16]

    Oh M H, Nho J S, Cho S B, Lee J S, Singh R K 2011 Powder Technol. 206 239Google Scholar

    [17]

    Zhou Y, Pan G S, Shi X L, Xu L, Zou C L, Gong H, Luo G H 2014 Appl. Surf. Sci. 316 643Google Scholar

    [18]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [19]

    Wysocki B, Idaszek J, Buhagiar J, Szlazak K, Brynk T, Kurzydlowski K J, Swieszkowski W 2019 Mater. Sci. Eng., C 95 428Google Scholar

    [20]

    Liu J W, Jiang L, Wu H Q, Zhao T, Qian L M 2020 J. Electrochem. Soc. 167 131502Google Scholar

    [21]

    Yin D, Yang L, Ma T D, Xu Y, Tan B M, Yang F, Sun X Q, Liu M R 2020 Mater. Chem. Phys. 252 123230Google Scholar

    [22]

    Pang R, Zhang X L 2019 J. Cleaner Prod. 233 84Google Scholar

    [23]

    Xiong X Q, Ma Q R, Yuan Y Y, Wu Z H, Zhang M 2020 J. Cleaner Prod. 267 121957Google Scholar

    [24]

    Mandal S, Thomas E L H, Gines L, Morgan D, Green J, Brousseau E B, Williams O A 2018 Carbon 130 25Google Scholar

    [25]

    Jiang L, He Y Y, Luo J B 2014 Tribol. Lett. 56 327Google Scholar

    [26]

    Hazarika J, Rajaraman P V 2020 ECS J. Solid State Sci. Technol. 9 024008Google Scholar

    [27]

    Zhang M, Oh J K, Huang S Y, Lin Y R, Liu Y, Mannan M S, Cisneros-Zevallos L, Akbulut M 2015 J. Food Eng. 161 8Google Scholar

    [28]

    Gottselig S M, Dunn-Horrocks S L, Woodring K S, Coufal C D, Tri D 2016 J. Poult. Sci. 95 1356Google Scholar

    [29]

    Zhang Z Y, Liao L X, Wang X Z, Xie W X, Guo D M 2020 Appl. Surf. Sci. 506 144670Google Scholar

    [30]

    Zhang Z Y, Cui J F, Zhang J B, Liu D D, Yu Z J, Guo D M 2019 Appl. Surf. Sci. 467–468 5Google Scholar

    [31]

    Zhang Z Y, Wang B, Zhou P, Kang R K, Zhang B, Guo D M 2016 Sci. Rep. 6 26891Google Scholar

    [32]

    Zhang Z Y, Wang B, Zhou P, Guo D M, Kang R K, Zhang B 2016 Sci. Rep. 6 22466Google Scholar

    [33]

    Xie W X, Zhang Z Y, Liao L X, Liu J, Su H J, Wang S D, Guo D M 2020 Nanoscale 12 22518Google Scholar

    [34]

    Liao L X, Zhang Z Y, Liu J, Li Y B, Cui X X, Liu L 2020 J. Manuf. Processes 59 51Google Scholar

    [35]

    Xue D B, Wang P, Jiao L Y, Li W H, Ji Y Q 2019 Appl. Opt. 58 1950Google Scholar

    [36]

    Wang H B, Song Z T, Liu W L, Kong H 2011 Microelectron. Eng. 88 1010Google Scholar

    [37]

    Li T, Sun H Y, Wang D Q, Huang J T, Li D D, Lei F, Sun D Z 2021 Appl. Surf. Sci. 537 147859Google Scholar

    [38]

    Guo X G, Huang J X, Yuan S, Chen C, Jin Z J, Kang R K, Guo D M 2020 Appl. Surf. Sci. 501 144170Google Scholar

    [39]

    Kawaguchi K, Ito H, Kuwahara T, Higuchi Y, Ozawa N, Kubo M 2016 ACS Appl. Mater. Interfaces 8 11830Google Scholar

    [40]

    Wen J L, Ma T B, Zhang W W, van Duin A C T, Lu X C 2017 Comput. Mater. Sci. 131 230Google Scholar

    [41]

    Sagi K V, Amanapu H P, Alety S R, Babu S V 2016 ECS J. Solid State Sci. Technol. 5 256Google Scholar

    [42]

    Yuan Z W, Jin Z J, Zhang Y J, Wen Q 2013 J. Manuf. Sci. Eng. 135 041006Google Scholar

    [43]

    倪自丰, 陈国美, 徐来军, 白亚雯, 李庆忠, 赵永武 2018 机械工程学报 54 19Google Scholar

    Ni Z F, Chen G M, Xu L J, Bai Y W, Li Q Z, Zhao Y W 2018 Chin. J. Mech. Eng. 54 19Google Scholar

    [44]

    Sagi K V, Teugels L G, van der Veen M H, Struyf H, Babu S V 2017 ECS J. Solid State Sci. Technol. 6 P259Google Scholar

    [45]

    Cimen Y, Akyuz S, Turk H 2015 New J. Chem. 39 3894Google Scholar

    [46]

    Feng D H, Wang W L, Liu W L, Song Z T 2020 ECS J. Solid State Sci. Technol. 9 074003Google Scholar

    [47]

    Piñeiro A, Black A, Medina J, Dieguez E, Parra V 2013 Wear 303 446Google Scholar

    [48]

    Uneda M, Fujii K 2020 Precis. Eng. 64 91Google Scholar

    [49]

    Deng J Y, Lu J B, Yan Q S, Pan J S 2020 Diamond Relat. Mater. 111 108147Google Scholar

    [50]

    Yang X, Sun R Y, Kawai K, Arima K, Yamamura K 2019 ACS Appl. Mater. Interfaces 11 2535Google Scholar

    [51]

    Ou L W, Wang Y H, Hu H Q, Zhang L L, Dong Z G, Kang R K, Guo D M, Shi K 2019 Precis. Eng. 55 14Google Scholar

    [52]

    Penta N K, Veera P R, Babu S V 2011 ACS Appl. Mater. Interfaces 3 4126Google Scholar

    [53]

    Guo J, Gong J, Shi P F, Xiao C, Jiang L, Chen L, Qian L M 2020 Tribol. Int. 150 106370Google Scholar

    [54]

    Nelabhotla D M, Jayaraman T V, Asghar K, Das D 2016 Mater. Des. 104 392Google Scholar

    [55]

    Pan B, Kang R K, Guo J, Fu H Y, Du D X, Kong J X 2019 J. Manuf. Processes 44 47Google Scholar

    [56]

    Kwon O, Bae K, Byun J, Lim T, Kim J J 2020 Microelectron. Eng. 227 111308Google Scholar

    [57]

    Mao M J, Chen W T, Liu J L, Hu Z H, Qin C J 2020 Int. J. Refract. Met. Hard Mater. 88 105179Google Scholar

    [58]

    Sharma P P, Suni I, Brands M, Li Y Z 2010 Electrochem. Solid-State Lett. 13 H416Google Scholar

    [59]

    Lee D, Kim H, Pak B, Kim D, Jeong H, Lee H 2017 J. Frict. Wear 38 482Google Scholar

    [60]

    Wan C C, Jiang S J, You M T, Sahayam A C 2005 J. Anal. At. Spectrom. 20 1290Google Scholar

    [61]

    Thomas E L H, Nelson G W, Mandal S, Foord J S, Williams O A 2014 Carbon 68 473Google Scholar

    [62]

    Shi Z Y, Jin Z J, Guo X G, Yuan S, Guo J 2019 Comput. Mater. Sci. 166 136Google Scholar

    [63]

    Chen G P, Li J G, Long J Y, Luo H M, Zhou Y, Xie X Z, Pan G S 2020 Appl. Surf. Sci. 15 147963Google Scholar

    [64]

    Chen G M, Ni Z F, Xu L J, Li Q Z, Zhao Y W 2015 Appl. Surf. Sci. 359 664Google Scholar

    [65]

    Dong Y, Lei H, Liu W Q, Chen Y 2019 J. Alloys Compd. 777 1294Google Scholar

    [66]

    Shao S, Wu B B, Wang P, He P, Qu X P 2020 Appl. Surf. Sci. 506 144976Google Scholar

    [67]

    Wang Q, Yin D, Gao B H, Tian S Y, Sun X Q, Liu M R, Zhang S H, Tan B M 2020 Colloids Surf., A 586 124286Google Scholar

    [68]

    Wu H Q, Jiang L, Liu J W, Deng C B, Huang H F, Qian L M 2020 Tribol. Lett. 68 34Google Scholar

    [69]

    Zhou J K, Niu X H, Cui Y Q, Wang Z, Wang J C, Wang R 2020 Appl. Surf. Sci. 505 144507Google Scholar

    [70]

    Jiang L, Lan Y Q, He Y Y, Li Y, Li Y Z, Luo J B 2014 Thin Solid Films 556 395Google Scholar

    [71]

    Hu L J, Pan G F, Wang H, Zhang X B, Wang Z Y, Zhu T T 2020 Mater. Chem. Phys. 256 123672Google Scholar

    [72]

    Kumar D, Jain V, Rai B 2018 Corros. Sci. 142 102Google Scholar

    [73]

    Rani B E A, Basu B B J 2012 Int. J. Corros. 2012 380217Google Scholar

    [74]

    Al-Amiery A A, Binti Kassim F A, Kadhum A A, Mohamad A B 2016 Sci. Rep. 6 19890Google Scholar

    [75]

    Matsuda T, Takahashi H, Tsurugaya M, Miyazaki K, Doy T K, Kinoshita M 2003 J. Electrochem. Soc. 150 532Google Scholar

    [76]

    Chandrasekaran N, Ramarajan S, Lee W, Sabde G M, Meikle S 2004 J. Electrochem. Soc. 151 G882Google Scholar

    [77]

    Seo Y J, Kim S Y, Choi Y O, Oh Y T, Lee W S 2004 Mater. Lett. 58 2091Google Scholar

    [78]

    Rahman M N A, Yusuf Y, Mansor M, Shuhaimi A 2016 Appl. Surf. Sci. 362 572Google Scholar

    [79]

    Shi K W, Kar Y B, Talik N A, Yew L W 2017 Proc. Eng. 184 360Google Scholar

    [80]

    Pan G S, Wang N, Gong H, Liu Y 2012 Tribol. Int. 47 142Google Scholar

    [81]

    Yang G, He P, Qu X P 2018 Appl. Surf. Sci. 427 148Google Scholar

    [82]

    Zhou J K, Niu X H, Wang Z, Cui Y Q, Wang J C, Yang C H, Huo Z Q, Wang R 2020 Colloids Surf., A 586 124293Google Scholar

    [83]

    Li J, Lu X C, Zhang Z B 2014 3rd International Conference on Machine Design and Manufacturing Engineering (ICMDME) South Korea, May 24–25, 2014 p74

    [84]

    Muniz-Miranda M, Muniz-Miranda F, Caporali S 2014 Beilstein J. Nanotechnol. 5 2489Google Scholar

    [85]

    Zhang W Q, Liu Y L, Wang C W, Niu X H, Ji J, Du Y C, Han L N 2017 ECS J. Solid State Sci. Technol. 6 786Google Scholar

    [86]

    Ma T D, Tan B M, Xu Y, Yin D, Liu G R, Zeng N Y, Song G Q, Kao Z X, Liu Y L 2020 Colloids Surf., A 599 124872Google Scholar

    [87]

    Hu L J, Pan G F, Wang H, Xu Y, Wang R 2020 Colloids Surf., A 603 125275Google Scholar

    [88]

    Zhang L F, Wang T Q, Lu X C 2019 Microelectron. Eng. 216 111090Google Scholar

    [89]

    Seo E B, Park J G, Bae J Y, Park J H 2020 J. Korean Phys. Soc. 76 1127Google Scholar

    [90]

    Ilie F, Ipate G 2020 Int. J. Surf. Sci. Eng. 14 105Google Scholar

    [91]

    Guo X G, Yuan S, Gou Y J, Wang X L, Guo J, Jin Z J, Kang R K 2020 Appl. Surf. Sci. 508 145262Google Scholar

    [92]

    Xu A X, Liu W L, Zhao G Y, Feng D H, Wang W L, Song Z T 2020 ECS J. Solid State Sci. Technol. 9 044007Google Scholar

    [93]

    Zhou J K, Niu X H, Yang C H, Huo Z Q, Lu Y N, Wang Z, Cui Y Q, Wang R 2020 Appl. Surf. Sci. 529 147109Google Scholar

    [94]

    Wen J L, Ma T B, Zhang W W, van Duin A C T, van Duin D M, Hu Y Z, Lu X C 2019 J. Phys. Chem. C 123 26467Google Scholar

    [95]

    Zhang R, Somasundaran P 2006 Adv. Colloid Interface Sci. 123 213Google Scholar

    [96]

    Xiao L, Xu G Y, Zhang Z Q, Wang Y B, Li G Z 2003 Colloids Surf., A 224 199Google Scholar

    [97]

    Pethica B A 1977 J. Colloid Interface Sci. 62 567Google Scholar

    [98]

    Asghar K, Qasim M, Nelabhotla D M, Das D 2016 Colloids Surf., A 497 133Google Scholar

    [99]

    Wang X, Lei H, Chen R L 2017 Precis. Eng. 50 263Google Scholar

    [100]

    Lee Y, Seo Y J, Lee H, Jeong H 2016 Int. J. Precis. Eng. Manuf. 3 13Google Scholar

    [101]

    Zhang Z F, Liu W L, Song Z T 2010 Appl. Opt. 49 5480Google Scholar

    [102]

    Palla B J, Shah D O 2000 J. Colloid Interface Sci. 223 102Google Scholar

    [103]

    Seo D, Schrader A M, Chen S Y, Kaufman Y, Cristiani T R, Page S H, Koenig P H, Gizaw Y, Lee D W, Israelachvili J N 2018 Proc. Natl. Acad. Sci. U.S.A. 115 8070Google Scholar

    [104]

    Zhang W G, Liu Y L, Wang C W, Niu X H, Han L N, Ji J, Du Y C 2018 Microelectronics 48 421Google Scholar

    [105]

    Choi I C, Kim H T, Yerriboina N P, Lee J H, Teugels, L, Kim T G, Park J G 2019 ECS J. Solid State Sci. Technol. 8 3028Google Scholar

    [106]

    Li Y L, Liu Y L, Wang C W, Li Y 2016 J. Semicond. 37 086001Google Scholar

    [107]

    Luan X D, Liu Y L, Zhang B G, Wang S L, Niu X H, Wang C W, Wang J 2017 Microelectron. Eng. 170 21Google Scholar

    [108]

    Parthiban P, Das D 2019 ECS J. Solid State Sci. Technol. 8 3106Google Scholar

    [109]

    Tang J Y, Liu Y L, Wang C W, Niu X H, Tan B M, Gao B H 2018 Microelectron. Eng. 202 1Google Scholar

    [110]

    Yin D, Tian S Y, Zhang N N, Wang Q, Sun X Q, Liu M R, Zhang S H, Tan B M 2021 Mater. Chem. Phys. 257 123841Google Scholar

    [111]

    王建超, 刘玉玲, 牛新欢, 杨盛华, 张凯, 周家凯, 张辉辉 2018 电镀与涂饰 37 1119Google Scholar

    Wang J C, Liu Y L, Niu X H, Yang S H, Zhang K, Zhou J K, Zhang H H 2018 Electroplat. Finish. 37 1119Google Scholar

    [112]

    Hong J, Niu X H, Liu Y L, Wang C W, Zhang B G, Sun M, Wang J, Han L Y, Zhang W Q 2017 Microelectron. Eng. 168 76Google Scholar

    [113]

    Xu Y C, Lu J, Xu X P 2019 Catalysts 9 594Google Scholar

    [114]

    Yu X, Zhang B G, Wang R, Kao Z X, Yang S H, Wei W 2021 Mater. Sci. Semicond. Process. 121 105387Google Scholar

    [115]

    Yuan Z W, He Y, Sun X W, Wen Q 2018 Mater. Manuf. Processes 33 1214Google Scholar

    [116]

    Wang J, Wang T Q, Pan G S, Lu X C 2016 Appl. Surf. Sci. 378 130Google Scholar

    [117]

    Zhang L, Zhang B G, Pan B C, Wang C W 2017 Appl. Surf. Sci. 422 247Google Scholar

    [118]

    Zhang L F, Deng H 2020 Appl. Surf. Sci. 514 145957Google Scholar

    [119]

    Xu W H, Lu X C, Pan G S, Lei Y Z, Luo J B 2010 Appl. Surf. Sci. 256 3936Google Scholar

    [120]

    Zhong M, Yuan R J, Li X B, Chen J F, Xu W H 2018 Surf. Eng. 31 1007Google Scholar

  • 图 1  CMP系统示意图

    Fig. 1.  Diagram of CMP system.

    图 2  不同H2O2浓度下铝合金基底的氧化和腐蚀过程示意图[37]

    Fig. 2.  Schematic diagram for the oxidation and corrosion processes of substrates with various H2O2 concentration[37].

    图 3  (a) 利用臭氧气体发生器产生的含气泡的强化浆料对SiC衬底的CMP方法示意图[48]; (b) 基于电芬顿反应的6H-SiC单晶增强CMP法原理图[49]; (c) 氯化钠水溶液阳极氧化装置示意图[50]; (d) 光化学辅助CMP示意图[51]

    Fig. 3.  (a) Illustration of proposed CMP method of SiC substrate by enhanced slurry containing bubbles enclosing ozone gas generated by ozone gas generator[48]; (b) schematic diagram of enhanced CMP method for single-crystal 6H-SiC based on electro-Fenton reaction[49]; (c) schematic diagram of anodic oxidation setup with sodium chloride aqueous solution[50]; (d) schematic diagram of photochemically combined CMP process[51].

    图 4  研制的优化CMP浆料的CMP机理示意图[29]

    Fig. 4.  Schematic diagram of the CMP mechanism for the developed optimal CMP slurry[29].

    图 5  (a) 具有阻挡层的Cu互连线的抛光过程; (b) CMP加工后具有的典型的碟状结构图形[70]; (c) 电偶腐蚀的示意图[71]

    Fig. 5.  (a) Schematic of the CMP process of Cu interconnect with a barrier; (b) typical dishing profiles of the pattern feature after CMP process[70]; (c) schematic diagram of galvanic corrosion[71].

    图 6  离子(a)和非离子(b)表面活性剂对高离子强度泥浆稳定性的影响; (c) 阴离子和非离子表面活性剂协同混合的高离子强度浆料稳定机理[102]

    Fig. 6.  Effects of ionic (a) and nonionic (b) surfactant addition on the stability of high ionic strength slurries; (c) mechanism of high ionic strength slurry stabilization by the synergistic mixture of anionic and nonionic surfactants[102].

    图 7  表面活性剂在液-汽界面和液-固界面的分布示意图 (a) 阳离子表面活性剂; (b) 非离子表面活性剂; (c) 阴离子表面活性剂[103]

    Fig. 7.  Schematics of how the surfactants are partitioned on the liquid-vapor and liquid-solid interfaces: (a) Cationic surfactants; (b) nonionic surfactants; (c) anionic surfactants[103]

    图 8  (a) 污染的图案化晶圆SEM图像(左)以及污染(中间)和清洁(右)的晶圆表面缺陷图[107]; (b) 污染(左)和清洁(右)的铜样品AFM图像[88]

    Fig. 8.  (a) SEM images (left) of contaminated patterned wafer and the defect map on contaminated (centre) and cleaned (right) wafer surface[107]; (b) AFM images of contaminated (left) and cleaned (right) Cu sample[88].

  • [1]

    Liao Z R, Abdelhafeez A, Li H N, Yang Y, Diaz O Z, Axinte D 2019 Int. J. Mach. Tools Manuf. 143 63Google Scholar

    [2]

    Chappert C, Bernas H, Ferre J, Kottler V, Jamet J P, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H 1998 Science 280 1919Google Scholar

    [3]

    Krishnan M, Nalaskowski J W, Cook L M 2010 Chem. Rev. 110 178Google Scholar

    [4]

    Zhong Z W 2020 Int. J. Adv. Manuf. Technol. 109 1419Google Scholar

    [5]

    Frank B, Kahl P, Podbiel D, Spektor G, Orenstein M, Fu L, Weiss T, Hoegen M H, Davis T J, zu Heringdorf F J M 2017 Sci. Adv. 3 1700721Google Scholar

    [6]

    Nagpal P, Lindquist N C, Oh S H, Norris D J 2009 Science 325 594Google Scholar

    [7]

    Zhang S J, Zhou Y P, Zhang H J, Xiong Z W, To S 2019 Int. J. Mach. Tools Manuf. 142 16Google Scholar

    [8]

    Guo X G, Yuan S, Huang J X, Chen C, Kang R K, Jin Z J, Guo D M 2020 Appl. Surf. Sci. 505 144610Google Scholar

    [9]

    Yuan S, Guo X G, Huang J X, Gou Y J, Jin Z J, Kang R K, Guo D M 2020 Tribol. Int. 148 106308Google Scholar

    [10]

    Qin C J, Hu Z H, Tang A M, Yang Z P, Luo S 2020 Wear 452–453 203293Google Scholar

    [11]

    Zhang Z F, Yan W X, Zhang L, Liu W L, Song Z T 2011 Microelectron. Eng. 88 3020Google Scholar

    [12]

    Xu W H, Cheng Y Y, Zhong M 2019 Microelectron. Eng. 216 111029Google Scholar

    [13]

    Werrell J M, Mandal S, Thomas E L H, Brousseau E B, Lewis R, Borri P, Davies P R, Williams O A 2017 Sci. Technol. Adv. Mater. 18 654Google Scholar

    [14]

    Lin Z C, Wang R Y, Ma S H 2018 Tribol. Int. 117 119Google Scholar

    [15]

    Sanusi N F A M, Yusoff M H M, Seng O B, Marzuki M S, Abdullah A Z 2018 J. Membr. Sci. 548 232Google Scholar

    [16]

    Oh M H, Nho J S, Cho S B, Lee J S, Singh R K 2011 Powder Technol. 206 239Google Scholar

    [17]

    Zhou Y, Pan G S, Shi X L, Xu L, Zou C L, Gong H, Luo G H 2014 Appl. Surf. Sci. 316 643Google Scholar

    [18]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [19]

    Wysocki B, Idaszek J, Buhagiar J, Szlazak K, Brynk T, Kurzydlowski K J, Swieszkowski W 2019 Mater. Sci. Eng., C 95 428Google Scholar

    [20]

    Liu J W, Jiang L, Wu H Q, Zhao T, Qian L M 2020 J. Electrochem. Soc. 167 131502Google Scholar

    [21]

    Yin D, Yang L, Ma T D, Xu Y, Tan B M, Yang F, Sun X Q, Liu M R 2020 Mater. Chem. Phys. 252 123230Google Scholar

    [22]

    Pang R, Zhang X L 2019 J. Cleaner Prod. 233 84Google Scholar

    [23]

    Xiong X Q, Ma Q R, Yuan Y Y, Wu Z H, Zhang M 2020 J. Cleaner Prod. 267 121957Google Scholar

    [24]

    Mandal S, Thomas E L H, Gines L, Morgan D, Green J, Brousseau E B, Williams O A 2018 Carbon 130 25Google Scholar

    [25]

    Jiang L, He Y Y, Luo J B 2014 Tribol. Lett. 56 327Google Scholar

    [26]

    Hazarika J, Rajaraman P V 2020 ECS J. Solid State Sci. Technol. 9 024008Google Scholar

    [27]

    Zhang M, Oh J K, Huang S Y, Lin Y R, Liu Y, Mannan M S, Cisneros-Zevallos L, Akbulut M 2015 J. Food Eng. 161 8Google Scholar

    [28]

    Gottselig S M, Dunn-Horrocks S L, Woodring K S, Coufal C D, Tri D 2016 J. Poult. Sci. 95 1356Google Scholar

    [29]

    Zhang Z Y, Liao L X, Wang X Z, Xie W X, Guo D M 2020 Appl. Surf. Sci. 506 144670Google Scholar

    [30]

    Zhang Z Y, Cui J F, Zhang J B, Liu D D, Yu Z J, Guo D M 2019 Appl. Surf. Sci. 467–468 5Google Scholar

    [31]

    Zhang Z Y, Wang B, Zhou P, Kang R K, Zhang B, Guo D M 2016 Sci. Rep. 6 26891Google Scholar

    [32]

    Zhang Z Y, Wang B, Zhou P, Guo D M, Kang R K, Zhang B 2016 Sci. Rep. 6 22466Google Scholar

    [33]

    Xie W X, Zhang Z Y, Liao L X, Liu J, Su H J, Wang S D, Guo D M 2020 Nanoscale 12 22518Google Scholar

    [34]

    Liao L X, Zhang Z Y, Liu J, Li Y B, Cui X X, Liu L 2020 J. Manuf. Processes 59 51Google Scholar

    [35]

    Xue D B, Wang P, Jiao L Y, Li W H, Ji Y Q 2019 Appl. Opt. 58 1950Google Scholar

    [36]

    Wang H B, Song Z T, Liu W L, Kong H 2011 Microelectron. Eng. 88 1010Google Scholar

    [37]

    Li T, Sun H Y, Wang D Q, Huang J T, Li D D, Lei F, Sun D Z 2021 Appl. Surf. Sci. 537 147859Google Scholar

    [38]

    Guo X G, Huang J X, Yuan S, Chen C, Jin Z J, Kang R K, Guo D M 2020 Appl. Surf. Sci. 501 144170Google Scholar

    [39]

    Kawaguchi K, Ito H, Kuwahara T, Higuchi Y, Ozawa N, Kubo M 2016 ACS Appl. Mater. Interfaces 8 11830Google Scholar

    [40]

    Wen J L, Ma T B, Zhang W W, van Duin A C T, Lu X C 2017 Comput. Mater. Sci. 131 230Google Scholar

    [41]

    Sagi K V, Amanapu H P, Alety S R, Babu S V 2016 ECS J. Solid State Sci. Technol. 5 256Google Scholar

    [42]

    Yuan Z W, Jin Z J, Zhang Y J, Wen Q 2013 J. Manuf. Sci. Eng. 135 041006Google Scholar

    [43]

    倪自丰, 陈国美, 徐来军, 白亚雯, 李庆忠, 赵永武 2018 机械工程学报 54 19Google Scholar

    Ni Z F, Chen G M, Xu L J, Bai Y W, Li Q Z, Zhao Y W 2018 Chin. J. Mech. Eng. 54 19Google Scholar

    [44]

    Sagi K V, Teugels L G, van der Veen M H, Struyf H, Babu S V 2017 ECS J. Solid State Sci. Technol. 6 P259Google Scholar

    [45]

    Cimen Y, Akyuz S, Turk H 2015 New J. Chem. 39 3894Google Scholar

    [46]

    Feng D H, Wang W L, Liu W L, Song Z T 2020 ECS J. Solid State Sci. Technol. 9 074003Google Scholar

    [47]

    Piñeiro A, Black A, Medina J, Dieguez E, Parra V 2013 Wear 303 446Google Scholar

    [48]

    Uneda M, Fujii K 2020 Precis. Eng. 64 91Google Scholar

    [49]

    Deng J Y, Lu J B, Yan Q S, Pan J S 2020 Diamond Relat. Mater. 111 108147Google Scholar

    [50]

    Yang X, Sun R Y, Kawai K, Arima K, Yamamura K 2019 ACS Appl. Mater. Interfaces 11 2535Google Scholar

    [51]

    Ou L W, Wang Y H, Hu H Q, Zhang L L, Dong Z G, Kang R K, Guo D M, Shi K 2019 Precis. Eng. 55 14Google Scholar

    [52]

    Penta N K, Veera P R, Babu S V 2011 ACS Appl. Mater. Interfaces 3 4126Google Scholar

    [53]

    Guo J, Gong J, Shi P F, Xiao C, Jiang L, Chen L, Qian L M 2020 Tribol. Int. 150 106370Google Scholar

    [54]

    Nelabhotla D M, Jayaraman T V, Asghar K, Das D 2016 Mater. Des. 104 392Google Scholar

    [55]

    Pan B, Kang R K, Guo J, Fu H Y, Du D X, Kong J X 2019 J. Manuf. Processes 44 47Google Scholar

    [56]

    Kwon O, Bae K, Byun J, Lim T, Kim J J 2020 Microelectron. Eng. 227 111308Google Scholar

    [57]

    Mao M J, Chen W T, Liu J L, Hu Z H, Qin C J 2020 Int. J. Refract. Met. Hard Mater. 88 105179Google Scholar

    [58]

    Sharma P P, Suni I, Brands M, Li Y Z 2010 Electrochem. Solid-State Lett. 13 H416Google Scholar

    [59]

    Lee D, Kim H, Pak B, Kim D, Jeong H, Lee H 2017 J. Frict. Wear 38 482Google Scholar

    [60]

    Wan C C, Jiang S J, You M T, Sahayam A C 2005 J. Anal. At. Spectrom. 20 1290Google Scholar

    [61]

    Thomas E L H, Nelson G W, Mandal S, Foord J S, Williams O A 2014 Carbon 68 473Google Scholar

    [62]

    Shi Z Y, Jin Z J, Guo X G, Yuan S, Guo J 2019 Comput. Mater. Sci. 166 136Google Scholar

    [63]

    Chen G P, Li J G, Long J Y, Luo H M, Zhou Y, Xie X Z, Pan G S 2020 Appl. Surf. Sci. 15 147963Google Scholar

    [64]

    Chen G M, Ni Z F, Xu L J, Li Q Z, Zhao Y W 2015 Appl. Surf. Sci. 359 664Google Scholar

    [65]

    Dong Y, Lei H, Liu W Q, Chen Y 2019 J. Alloys Compd. 777 1294Google Scholar

    [66]

    Shao S, Wu B B, Wang P, He P, Qu X P 2020 Appl. Surf. Sci. 506 144976Google Scholar

    [67]

    Wang Q, Yin D, Gao B H, Tian S Y, Sun X Q, Liu M R, Zhang S H, Tan B M 2020 Colloids Surf., A 586 124286Google Scholar

    [68]

    Wu H Q, Jiang L, Liu J W, Deng C B, Huang H F, Qian L M 2020 Tribol. Lett. 68 34Google Scholar

    [69]

    Zhou J K, Niu X H, Cui Y Q, Wang Z, Wang J C, Wang R 2020 Appl. Surf. Sci. 505 144507Google Scholar

    [70]

    Jiang L, Lan Y Q, He Y Y, Li Y, Li Y Z, Luo J B 2014 Thin Solid Films 556 395Google Scholar

    [71]

    Hu L J, Pan G F, Wang H, Zhang X B, Wang Z Y, Zhu T T 2020 Mater. Chem. Phys. 256 123672Google Scholar

    [72]

    Kumar D, Jain V, Rai B 2018 Corros. Sci. 142 102Google Scholar

    [73]

    Rani B E A, Basu B B J 2012 Int. J. Corros. 2012 380217Google Scholar

    [74]

    Al-Amiery A A, Binti Kassim F A, Kadhum A A, Mohamad A B 2016 Sci. Rep. 6 19890Google Scholar

    [75]

    Matsuda T, Takahashi H, Tsurugaya M, Miyazaki K, Doy T K, Kinoshita M 2003 J. Electrochem. Soc. 150 532Google Scholar

    [76]

    Chandrasekaran N, Ramarajan S, Lee W, Sabde G M, Meikle S 2004 J. Electrochem. Soc. 151 G882Google Scholar

    [77]

    Seo Y J, Kim S Y, Choi Y O, Oh Y T, Lee W S 2004 Mater. Lett. 58 2091Google Scholar

    [78]

    Rahman M N A, Yusuf Y, Mansor M, Shuhaimi A 2016 Appl. Surf. Sci. 362 572Google Scholar

    [79]

    Shi K W, Kar Y B, Talik N A, Yew L W 2017 Proc. Eng. 184 360Google Scholar

    [80]

    Pan G S, Wang N, Gong H, Liu Y 2012 Tribol. Int. 47 142Google Scholar

    [81]

    Yang G, He P, Qu X P 2018 Appl. Surf. Sci. 427 148Google Scholar

    [82]

    Zhou J K, Niu X H, Wang Z, Cui Y Q, Wang J C, Yang C H, Huo Z Q, Wang R 2020 Colloids Surf., A 586 124293Google Scholar

    [83]

    Li J, Lu X C, Zhang Z B 2014 3rd International Conference on Machine Design and Manufacturing Engineering (ICMDME) South Korea, May 24–25, 2014 p74

    [84]

    Muniz-Miranda M, Muniz-Miranda F, Caporali S 2014 Beilstein J. Nanotechnol. 5 2489Google Scholar

    [85]

    Zhang W Q, Liu Y L, Wang C W, Niu X H, Ji J, Du Y C, Han L N 2017 ECS J. Solid State Sci. Technol. 6 786Google Scholar

    [86]

    Ma T D, Tan B M, Xu Y, Yin D, Liu G R, Zeng N Y, Song G Q, Kao Z X, Liu Y L 2020 Colloids Surf., A 599 124872Google Scholar

    [87]

    Hu L J, Pan G F, Wang H, Xu Y, Wang R 2020 Colloids Surf., A 603 125275Google Scholar

    [88]

    Zhang L F, Wang T Q, Lu X C 2019 Microelectron. Eng. 216 111090Google Scholar

    [89]

    Seo E B, Park J G, Bae J Y, Park J H 2020 J. Korean Phys. Soc. 76 1127Google Scholar

    [90]

    Ilie F, Ipate G 2020 Int. J. Surf. Sci. Eng. 14 105Google Scholar

    [91]

    Guo X G, Yuan S, Gou Y J, Wang X L, Guo J, Jin Z J, Kang R K 2020 Appl. Surf. Sci. 508 145262Google Scholar

    [92]

    Xu A X, Liu W L, Zhao G Y, Feng D H, Wang W L, Song Z T 2020 ECS J. Solid State Sci. Technol. 9 044007Google Scholar

    [93]

    Zhou J K, Niu X H, Yang C H, Huo Z Q, Lu Y N, Wang Z, Cui Y Q, Wang R 2020 Appl. Surf. Sci. 529 147109Google Scholar

    [94]

    Wen J L, Ma T B, Zhang W W, van Duin A C T, van Duin D M, Hu Y Z, Lu X C 2019 J. Phys. Chem. C 123 26467Google Scholar

    [95]

    Zhang R, Somasundaran P 2006 Adv. Colloid Interface Sci. 123 213Google Scholar

    [96]

    Xiao L, Xu G Y, Zhang Z Q, Wang Y B, Li G Z 2003 Colloids Surf., A 224 199Google Scholar

    [97]

    Pethica B A 1977 J. Colloid Interface Sci. 62 567Google Scholar

    [98]

    Asghar K, Qasim M, Nelabhotla D M, Das D 2016 Colloids Surf., A 497 133Google Scholar

    [99]

    Wang X, Lei H, Chen R L 2017 Precis. Eng. 50 263Google Scholar

    [100]

    Lee Y, Seo Y J, Lee H, Jeong H 2016 Int. J. Precis. Eng. Manuf. 3 13Google Scholar

    [101]

    Zhang Z F, Liu W L, Song Z T 2010 Appl. Opt. 49 5480Google Scholar

    [102]

    Palla B J, Shah D O 2000 J. Colloid Interface Sci. 223 102Google Scholar

    [103]

    Seo D, Schrader A M, Chen S Y, Kaufman Y, Cristiani T R, Page S H, Koenig P H, Gizaw Y, Lee D W, Israelachvili J N 2018 Proc. Natl. Acad. Sci. U.S.A. 115 8070Google Scholar

    [104]

    Zhang W G, Liu Y L, Wang C W, Niu X H, Han L N, Ji J, Du Y C 2018 Microelectronics 48 421Google Scholar

    [105]

    Choi I C, Kim H T, Yerriboina N P, Lee J H, Teugels, L, Kim T G, Park J G 2019 ECS J. Solid State Sci. Technol. 8 3028Google Scholar

    [106]

    Li Y L, Liu Y L, Wang C W, Li Y 2016 J. Semicond. 37 086001Google Scholar

    [107]

    Luan X D, Liu Y L, Zhang B G, Wang S L, Niu X H, Wang C W, Wang J 2017 Microelectron. Eng. 170 21Google Scholar

    [108]

    Parthiban P, Das D 2019 ECS J. Solid State Sci. Technol. 8 3106Google Scholar

    [109]

    Tang J Y, Liu Y L, Wang C W, Niu X H, Tan B M, Gao B H 2018 Microelectron. Eng. 202 1Google Scholar

    [110]

    Yin D, Tian S Y, Zhang N N, Wang Q, Sun X Q, Liu M R, Zhang S H, Tan B M 2021 Mater. Chem. Phys. 257 123841Google Scholar

    [111]

    王建超, 刘玉玲, 牛新欢, 杨盛华, 张凯, 周家凯, 张辉辉 2018 电镀与涂饰 37 1119Google Scholar

    Wang J C, Liu Y L, Niu X H, Yang S H, Zhang K, Zhou J K, Zhang H H 2018 Electroplat. Finish. 37 1119Google Scholar

    [112]

    Hong J, Niu X H, Liu Y L, Wang C W, Zhang B G, Sun M, Wang J, Han L Y, Zhang W Q 2017 Microelectron. Eng. 168 76Google Scholar

    [113]

    Xu Y C, Lu J, Xu X P 2019 Catalysts 9 594Google Scholar

    [114]

    Yu X, Zhang B G, Wang R, Kao Z X, Yang S H, Wei W 2021 Mater. Sci. Semicond. Process. 121 105387Google Scholar

    [115]

    Yuan Z W, He Y, Sun X W, Wen Q 2018 Mater. Manuf. Processes 33 1214Google Scholar

    [116]

    Wang J, Wang T Q, Pan G S, Lu X C 2016 Appl. Surf. Sci. 378 130Google Scholar

    [117]

    Zhang L, Zhang B G, Pan B C, Wang C W 2017 Appl. Surf. Sci. 422 247Google Scholar

    [118]

    Zhang L F, Deng H 2020 Appl. Surf. Sci. 514 145957Google Scholar

    [119]

    Xu W H, Lu X C, Pan G S, Lei Y Z, Luo J B 2010 Appl. Surf. Sci. 256 3936Google Scholar

    [120]

    Zhong M, Yuan R J, Li X B, Chen J F, Xu W H 2018 Surf. Eng. 31 1007Google Scholar

  • [1] 俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟. 高压直流电缆聚丙烯绝缘电场调控. 物理学报, 2023, 72(6): 068402. doi: 10.7498/aps.72.20222320
    [2] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [3] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [4] 张心正, 夏峰, 许京军. 激光超衍射加工机理与研究进展. 物理学报, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [5] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [6] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [7] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [8] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [9] 邵轩, 楚晓亮, 王剑, 许金菊. 风浪因素对海洋波导雷达回波作用机理的研究. 物理学报, 2012, 61(15): 159203. doi: 10.7498/aps.61.159203
    [10] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [11] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [12] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究. 物理学报, 2011, 60(11): 117101. doi: 10.7498/aps.60.117101
    [13] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响. 物理学报, 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [14] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [15] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [16] 张 明, 戴宏毅, 欧保全, 谢红卫, 胡德文. 多能级原子与多模光场的相互作用机理研究. 物理学报, 2007, 56(12): 6961-6969. doi: 10.7498/aps.56.6961
    [17] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [18] 马丙现, 贾 瑜, 姚 宁, 杨仕娥, 张兵临. 模板对异构体选择性生长的动力学控制作用与化学气相沉积金刚石的生长机理. 物理学报, 2005, 54(9): 4300-4308. doi: 10.7498/aps.54.4300
    [19] 张朝辉, 雒建斌, 温诗铸. 化学机械抛光中纳米颗粒的作用分析. 物理学报, 2005, 54(5): 2123-2127. doi: 10.7498/aps.54.2123
    [20] 王福合, 杨金龙, 李家明. Al(111)表面单个Al原子的操纵── W针尖与Al原子的相互作用. 物理学报, 1998, 47(11): 1827-1839. doi: 10.7498/aps.47.1827
计量
  • 文章访问数:  10918
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-14
  • 修回日期:  2020-12-30
  • 上网日期:  2021-03-11
  • 刊出日期:  2021-03-20

/

返回文章
返回