搜索

x
中国物理学会期刊

基于第一性原理的二维材料黑磷砷气体传感器的机理研究

CSTR: 32037.14.aps.70.20201952

First principle study on gas sensor mechanism of black-AsP monolayer

CSTR: 32037.14.aps.70.20201952
PDF
HTML
导出引用
  • 通过密度泛函理论计算, 研究了气体小分子吸附在单层黑磷砷表面的电学和磁学特性. 选择4个初始吸附点位来探索CO, CO2, NH3, SO2, NO和NO2气体分子最优的吸附位置, 计算了吸附能、吸附距离和电荷转移等电子结构参数, 确定了吸附类型和敏感气体. 结果表明, 单层黑磷砷以强的物理吸附对NO2和SO2气体敏感, 而通过化学吸附对NO气体敏感并且N原子和P原子间还形成新的化学键. 从能带结构角度, CO, CO2和NH3这三种气体吸附对黑磷砷的能带结构影响很小, SO2气体吸附增大带隙宽度. 磁性气体NO 和NO2的吸附则在费米能级附近引入杂质能带, 这主要来源于N原子和O原子的p轨道, 并且减小了带隙宽度. NO和NO2气体还分别诱导了0.83μB和0.78μB的磁矩, 使得整个体系带有磁性. 理论研究表明, 单层黑磷砷是检测NO, NO2和SO2气体的良好气敏材料.

     

    Since the successful synthesis of graphene, two-dimensional materials, including hexagonal boron nitride and transition mental dichalcogenides, have attracted wide attention due to their extraordinary properties and extensive applications. Recent researches have revealed that the sensing system based on graphene or MoS2 can efficiently sense various gas molecules. However, the utility of these materials is limited by their inherent weakness, i.e. the zero bandgap in graphene and the relatively low mobility in MoS2, which impede their applications in electronic devices. This further stimulates the motivation of researchers to find more novel 2D materials. Black arsenic phosphide (AsP) monolayer, a novel two-dimensional nanomaterial with the characteristics of model direct bandgap and superhigh carrier mobility, is an ideal material for gas sensor. Here in this work, we investigate the electronic and magnetic properties of monolayer AsP absorbed with small gas molecules by using first-principle calculations based on density functional theory. Four initial absorption sites are selected to explore the optimal absorption positions of CO, CO2, NH3, SO2, NO and NO2 absorbed on the monolayer AsP. The purpose is to calculate the optimal absorption configurations, the absorption energy, absorption distance, and charge transfer, thereby investigating the absorption types. The results revel that the monolayer AsP is sensitive to NO2 gas and SO2 gas via strong physical absorption, and NO gas by chemical absorption, forming a new bond between N atom and O atom. The CO, CO2 and NH3 gas are absorbed on AsP monolayer with weak van Waals force. From the point of view of charge transfer, the CO, CO2, and NH3 molecules are one order of magnitude smaller than SO2, NO and NO2, approximately 0.03e and the charge transfer of NO gas is 0.21e, highest in all gases. Besides, the effects of absorption on the electrons of AsP are investigated. The results show that the absorption of CO, CO2 and NH3 molecules have little effect on band structure, and that the absorption of SO2 molecule increases the bandgap. The absorption of magnetic gas NO and NO2 reduce the bandgap by introducing impurity level near Fermi level, giving rise to their magnetic moments of 0.83μB and 0.78μB and making the whole system magnetic. Theoretical research shows that monolayer AsP is sensitive to NO, NO2 and SO2 gas molecules, which provides theoretical guidance for the experimental preparation of gas sensors band on black arsenic phosphorus.

     

    目录

    /

    返回文章
    返回