搜索

x
中国物理学会期刊

Mn-In-Cu共掺杂优化SnTe基材料的热电性能

CSTR: 32037.14.aps.70.20202020

Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials

CSTR: 32037.14.aps.70.20202020
PDF
HTML
导出引用
  • 无铅硫族化合物SnTe因与PbTe具有相似的晶体结构和能带结构, 近些年受到广泛关注, 然而其较低的Seebeck系数、本征高Sn空位浓度以及高的热导率导致本征热电性能较差. 本文通过高温高压结合热压烧结的方式制备了Mn, In, Cu共掺杂的SnTe基热电材料. Mn带来的能带收敛和In引入的共振能级的共同作用提高了材料整个温度范围内的Seebeck系数, 优化了材料的功率因子. 此外, Mn合金化带来的点缺陷和Cu引入的间隙缺陷增强了声子散射, 有效降低了材料的晶格热导率. 多种策略结合下材料的电性能与热性能同时得到优化, 其中Sn0.89Mn0.15In0.01Te(Cu2Te)0.05样品在873 K时获得最大zT ≈ 1.45, 300—873 K的平均zT达到0.76. 多策略协同调控SnTe基热电材料时仍能较好地保持单策略所发挥的优异特性, 这为进一步改进SnTe基热电材料性能提供了可能.

     

    Lead-free chalcogenide SnTe has a similar crystal structure and energy band structure to high performance thermoelectric material PbTe, which has been widely concerned in recent years. However, due to its low Seebeck coefficient, high intrinsic Sn vacancy concentration and high thermal conductivity, its intrinsic thermoelectric performance is poor. In this study, Mn-In-Cu co-doping SnTe-based thermoelectric materials are prepared by hot pressing sintering at high-temperature and high-pressure. Indium (In) doping brings the resonant level in SnTe and increases the density of states which greatly improves Seebeck coefficient at room temperature; the Seebeck coefficient of Sn1.04In0.01Te(Cu2Te)0.05 reaches 70 μV·K–1 at room temperature. With adding manganese (Mn), the Seebeck coefficient at room temperature is well preserved, indicating that Mn doping has little effect on the resonant level brought by In doping. In addition, due to the band convergence brought by Mn doping, the high temperature Seebeck coefficient of the material is improved, the maximum Seebeck coefficient reaches 215 μV·K–1 for the sample with 17% Mn doping amount at 873 K. Owing to the combination of band convergence and resonant level, the Seebeck coefficient of the whole temperature range of the material increases, the power factor of the material is also greatly optimized, and all samples have a power factor of more than 1.0 mW·m–1·K–2 at room temperature. On the other hand, the point defects brought by Mn alloying and the interstitial defects introduced by copper (Cu) enhance the phonon scattering and effectively reduce the lattice thermal conductivity of the material, the lattice thermal conductivity decreases to 0.68 W·m–1·K–1 at 873 K. The electrical and thermal properties of the materials are optimized simultaneously under the combination of various strategies, the peak zT ≈ 1.45 is obtained at 873 K in the p-type Sn0.89Mn0.15In0.01Te(Cu2Te)0.05 sample and the average zT of 300–873 K reaches 0.76. In the process of multi-strategy coordinated regulation of SnTe-based thermoelectric materials, the excellent properties of single strategy can be well maintained, which provides a possibility for further improving the performance of SnTe-based thermoelectric materials.

     

    目录

    /

    返回文章
    返回