搜索

x
中国物理学会期刊

微分相位衬度计算机层析成像的感兴趣区域重建方法

CSTR: 32037.14.aps.70.20202192

Method of reconstructing region of interest for differential phase contrast computed tomography imaging

CSTR: 32037.14.aps.70.20202192
PDF
HTML
导出引用
  • 基于光栅干涉仪系统的X射线微分相位衬度计算机层析成像, 不仅可以重建物体的线性衰减系数, 还可以重建物体的相移系数和线性散射系数. 在实际应用时, 大面积光栅不易获得, 常常遇到样品大于光栅的情况. 当用小于样品的光栅对样品进行扫描时, 样品超出光栅成像视野的部分会导致微分相位投影信息被截断. 本文针对微分相位衬度计算机层析成像提出了一种相移系数的感兴趣区域重建方法. 该方法利用物体相移系数和线性衰减系数(即折射率实部减小量和折射率虚部)之间的近似线性关系; 通过重建相移系数的Lambda函数和线性衰减系数的Lambda逆函数的多项式组合, 近似重建物体感兴趣区域的相移系数. 数值模拟实验依据菲涅耳衍射积分理论, 进行计算机仿真X射线的传播过程和光栅成像过程. 实际实验利用上海同步辐射BL13W1站的Talbot光栅干涉仪系统, 分别对标准模体和生物样品进行光栅微分相位衬度计算机层析成像. 数值模拟和实际实验结果都验证了该方法的有效性.

     

    X-ray differential phase contrast computed tomography imaging based on grating interferometer system can reconstruct not only the linear attenuation coefficient, but also the phase shift coefficient and the linear scattering coefficient of the object. In practical application, it is very difficult to make a large area grating, so the sample is often larger than the grating. When the sample is scanned with a grating smaller than the sample, the part of the sample beyond the field of view of the grating will cause the differential phase projection information to be truncated. In this paper, a method of reconstructing the region of interest for differential phase contrast computed tomography is proposed. The method is based on the approximate linear relation between the phase shift coefficient of the object and the linear attenuation coefficient (i.e. the decrement in the real part of the refractive index and the imaginary part of the refractive index), the phase shift coefficient of the region of interest is approximately reconstructed by the polynomial of Lambda function of the phase shift coefficient and Lambda inverse function of linear attenuation coefficient. In this paper, according to the Fresnel diffraction theory and differential phase grating phase step-by-step method of imaging a simulation experiment is performed. In the experiment, conducted is the approximate reconstruction by using the first order polynomial and quadratic polynomial of Lambda function of the phase shift coefficient and Lambda inverse function of linear attenuation coefficient. The sample size is five times of grating imaging field, and the results show that this method can approximately reconstruct the region of interest for the sample image. We also carry out the actual data experiment. The actual data are obtained by the Talbot grating interferometer system of Shanghai synchrotron radiation BL13W1 station, and the standard model and biological sample are imaged. The method of reconstructing the region of interest is proposed in this paper. This method can be applied to the multi-material samples with a similar relationship between the decrement in the real part of the refractive index and the decrement in the imaginary part of the refractive index, and also to single-material samples. The comparison between the numerical simulations and the actual experimental results verifies the effectiveness of the proposed method.

     

    目录

    /

    返回文章
    返回