搜索

x
中国物理学会期刊

用于亚开温区的极低温绝热去磁制冷机

CSTR: 32037.14.aps.70.20202237

Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region

CSTR: 32037.14.aps.70.20202237
PDF
HTML
导出引用
  • 随着空间观测、量子技术等前沿科研领域的发展, 亚开温区的极低温制冷需求日益增加. 本文设计并研制了一台极低温单级绝热去磁制冷机. 该制冷机由GM型制冷机提供约3 K热沉, 以钆镓石榴石为磁热工质, 由超导线圈提供最大为4 T的磁场, 通过绝热去磁, 实验最低温度可达470 mK. 在恒温控制模式下, 可在1 K下提供2.7 J冷量, 温度波动小于0.5 mK, 绝热去磁制冷的第二热力学效率为57%; 在0.8 K下, 制冷量为1.2 J. 该制冷机将作为50 mK温区三级绝热去磁制冷系统中的第一级, 在1 K下提供0.7 mW制冷功率. 本研究为进一步开展极低温多级连续绝热去磁制冷奠定了基础.

     

    With the development of space observation, quantum technology and other frontier scientific research fields, the demand for ultra-low temperature refrigeration in sub-Kelvin region is increasing. Compared with dilution refrigeration and sorption refrigeration, adiabatic demagnetization refrigeration (ADR) has the outstanding advantages of high efficiency, compact, gravity independence and accessibility of working materials, which make ADR a promising technology for sub-Kelvin cooling.
    A single-stage ultro-low temperature adiabatic demagnetization refrigerator is designed and developed. The thermodynamic principle and quantitative analysis are presented, from the macroscopic and microcosmic view, and operating results show good agreement with the theoretical value.
    This refrigerator is precooled to 3 K by a GM-type refrigerator, with 252 g gadolinium gallium garnet (monocrystalline) used as a working medium. The maximum magnetic field of 4 T is provided by a superconducting coil. Flexible heat connection is used between the pre-cooler and ADR, so heat generated by vibration decreases. From (3 K, 4 T), the lowest temperature can reach 0.47 K by adiabatic demagnetization, which is consistent with the result drawn from the entropy data. In a constant-temperature-control mode, the demagnetization rate is controlled by a feedback loop, so the temperature can be held in the presence of a load. A cooling capacity of 2.7 J is provided at 1 K, with temperature fluctuation being lower than 0.5 mK, and the second thermodynamic efficiency of adiabatic demagnetization refrigeration is 57%. at 0.8 K, the cooling capacity is 1.2 J.
    Future work on improving the performance includes the improving of the on-off ratio of the heat switch, so, the irreversible loss caused by the heat transfer temperature difference in conduction state can be reduced. Improving the heat transfer performance of the salt pill, the heat can be ejected in a shorter period.
    This refrigerating machine is the first Chinese adiabatic demagnetization refrigeration system that can be operated in circulation, which is expected to be the 1st stage of a three-stage adiabatic demagnetization refrigeration system in a 50 mK temperature zone. This study lays a foundation for further developing continuous multistage adiabatic demagnetization refrigeration at ultra-low temperature.

     

    目录

    /

    返回文章
    返回