搜索

x
中国物理学会期刊

强激光驱动高能极化正负电子束与偏振伽马射线的研究进展

CSTR: 32037.14.aps.70.20210009

Review on laser-driven high-energy polarized electron and positron beams and γ-rays

CSTR: 32037.14.aps.70.20210009
PDF
HTML
导出引用
  • 高能自旋极化正负电子束与偏振伽马射线在高能物理、实验室天体物理与核物理等领域有十分重要的应用. 近年来随着超短超强激光脉冲技术的快速发展, 利用强激光与物质相互作用的非线性康普顿散射和多光子Breit-Wheeler过程为制备高极化度、高束流密度的高能极化粒子束提供了新的可能. 本文对基于强激光产生高能极化正负电子束与偏振伽马射线的研究成果进行简要回顾, 并介绍了这些方法的基本物理原理和主要结果.

     

    High-energy spin-polarized electron and positron beams and γ-rays have plenty of significant applications in high-energy, laboratory astro- and nuclear physics, and the efficient generation of such polarized beams attracts a broad research interest. Recently, with the rapid development of ultrashort ultraintense laser pulse technology, the modern laser pulses can achieve a peak intensity in a range of 102210^23 W/cm2 with a pulse duration of tens of femtoseconds. The interaction mechanisms between such a laser pulse and matter have been spanned from linear regime to nonlinear regime due to multiphoton absorbtion, such as nonlinear Compton scattering and Breit-Wheeler pair production. Employing spin-dependent nonlinear Compton scattering and multiphoton Breit-Wheeler scattering in laser-matter interaction paves a new way for generating the high-polarized high-density high-energy electron and positron beams and γ-rays with tens of femtoseconds in pulse duration. This article briefly reviews the research progress of polarized electron and positron beams and γ-rays generated by laser-matter interaction, and also introduces the principles and main conclusions.

     

    目录

    /

    返回文章
    返回