搜索

x
中国物理学会期刊

光学谐振腔的传输特性

CSTR: 32037.14.aps.70.20210234

Transmission characteristics of optical resonator

CSTR: 32037.14.aps.70.20210234
PDF
HTML
导出引用
  • 量子噪声已成为当前精密测量应用中的一种重要限制因素, 与其相关的问题已成为研究热点. 光学谐振腔作为操控量子噪声的一种重要光学器件, 其传输特性决定了输出信号噪声的演化特性. 本文通过理论分析光学谐振腔输出的强度、相位与频率的对应关系, 对比了过耦合腔、阻抗匹配腔与欠耦合腔传输函数、能量传输、噪声传递的频谱特性, 证明其具有功率分束、频率滤波、噪声转换等特性, 为量子噪声的分析与操控等应用研究提供了基础, 将推动精密测量领域的发展.

     

    Quantum noise has become an important limiting factor in the application of precision measurement, and its relevant problems have become a research hotspot. As an important optical device to manipulate quantum noise, the optical resonator possesses the transmission characteristics that determine the evolution characteristics of output signal’s noise. According to their impedance matching factor a values, the resonators can be divided into three categories: over-coupled cavity for a \in - 1, 0), impedance matched cavity for a = 0, and under-coupled cavity for a \in (0, 1. When the resonator fully meets the resonant conditions, its output field can be regarded as a low-pass filter, the high-frequency noise is directly reflected. The high-frequency noise at the output end is greatly suppressed, and the noise at the frequency far larger than the linewidth reaches the shot noise standard. Therefore, the noise of the optical field beyond the linewidth range can be greatly suppressed by the narrow linewidth optical resonator. At the same time, from the three kinds of optical resonator phase diagrams it can be found that the over-coupled cavity is in a state of half a detuning and the sideband frequency phase rotates ± 90° relative to the carrier frequency. In this case, the phase noise of light field can be converted into amplitude noise by an over-coupled cavity, which can be used for the phase noise measurement or squeezing angle rotation of squeezed light and has important applications in analyzing the laser noise component and manipulating the quantum noise. At the same time, the energy loss of the over-coupled cavity is the largest among the three types of cavity structures. Through theoretically analysing the corresponding relation among optical resonator output intensity, phase and frequency, and by making a comparison of comparing transfer function, energy transmission, spectrum characteristics of noise transmission among over-coupled cavity, impedance matched cavity and under-coupled cavity, in this paper the power splitter, frequency filtering, and noise transformation features of the optical resonator are demonstrated. The analysis results in this paper provide a basis for applying various optical resonators to different occasions, and promote the development of using the optical resonators to control the quantum noise of light field and improving the precision of precision measurement.

     

    目录

    /

    返回文章
    返回