搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齿鲸生物声呐目标探测研究综述

宋忠长 张金虎 冯文 杨武夷 张宇

引用本文:
Citation:

齿鲸生物声呐目标探测研究综述

宋忠长, 张金虎, 冯文, 杨武夷, 张宇

An overview of mechanism of target detection by odontocetes biosonar

Song Zhong-Chang, Zhang Jin-Hu, Feng Wen, Yang Wu-Yi, Zhang Yu
PDF
HTML
导出引用
  • 齿鲸依靠其天然的声呐系统进行水下目标探测. 齿鲸通过前额的声发射系统发出超声脉冲, 经声阻抗各异的声学结构调控形成波束, 作用于目标, 利用下颌区域的多相声接收通道接收目标回波. 齿鲸通过分析目标回波中蕴含的时域、频域与能量等多维度信息, 并进行非线性组合, 实现目标探测与辨别. 齿鲸目标探测过程蕴藏复杂的物理机理. 本文以目标探测实验测量、目标回波散射分析与仿齿鲸声呐系统为出发点, 回溯齿鲸声呐目标探测的相关研究. 齿鲸在目标探测过程中, 会根据目标强度、回波的时频信息, 自适应调整其声发射脉冲频率、发射系统几何形态, 实现高效探测, 是优越的水声探测系统. 参考齿鲸声呐设计人工探测系统可获取多维度的声场信息, 与生物实验测量相辅相成, 加深对生物多相介质中的声发射与声接收过程的理解, 丰富齿鲸目标探测物理机理认知, 为人工仿生声探测技术的发展与仿生水下装置设计提供新参考.
    Odontocetes have evolved to own a unique natural sonar system to detect targets. Odontocetes use their sound emission systems in their foreheads to produce echolocation clicking targets. Echoes contain information about the size, material and ranges of the targets. Odontocetes can probe into the echoes in both time domain and frequency domain to realize the target discrimination. More studies are necessary to reveal how odontcoetes collect meaningful information from echoes. In this paper, the target detection by odontocetes is reviewed from three aspects, i.e. detection range, target discrimination and biomimetic target detection system. Odontocetes can actively adjust their biosonar systems to realize optimal detection. Numerical simulation and bioinspired systems can help to shed light on physical mechanism of odontocetes’ target detection process. Multiple theories are needed to deepen our understanding of target detection by odontocetes, which can provide references for designing intelligent biomimetic signal processors.
      通信作者: 张宇, yuzhang@xmu.edu.cn
      作者简介:
      张宇, 教育部长江学者特聘教授, 南京大学博士(2000年). 美国西北大学和威斯康星大学麦迪逊分校博士后、助理科学家、副科学家. 美国麻省理工学院高级访问学者. 主要研究领域为海洋仿生、海洋生物声学、仿生探测与通信、海洋人工智能等. 在Science Advances, National Science Review, Journal of the Acoustical Society of America等国际权威期刊发表论文一百余篇. 主持有关重点项目、国家自然科学基金、国家重点研发计划等课题. 担任Science Advances, Physics Review Letters等专业评审. 担任中国海洋学会海洋物理分会理事会理事、中国海洋学会深海技术分会理事会理事等
    • 基金项目: 国家重点研发计划(批准号: 2018YFC1407504, 2018YFC1407505)、国家自然科学基金(批准号: 12074323)、厦门市海洋与渔业发展专项资金(批准号: 20CZB015HJ01)、广东省水利科技创新项目(批准号: 2020-16)、中国博士后科学基金(批准号: 2020M682086)和博士后创新人才支持计划(批准号: BX2021168)资助的课题
      Corresponding author: Zhang Yu, yuzhang@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFC1407504, 2018YFC1407505), the National Natural Science Foundation of China (Grant No. 12074323), the Special Fund for Marine and Fishery Development of Xiamen, China (Grant No. 20CZB015HJ01), the Water Conservancy Science and Technology Innovation Project of Guangdong Province, China (Grant No. 2020-16), the China Postdoctoral Science Foundation (Grant No. 2020M682086), and the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021168)
    [1]

    Kinsler L E, Frey A R, Coppens A B, Sanders J V 2000 Fundamentals of Acoustics (New York: Wiley) pp435−470

    [2]

    Urick R J 1983 Principles of Underwater Sound (New York: McGraw- Hill) pp1−16

    [3]

    Au W W L, Simmons J A 2007 Phys. Today 60 40

    [4]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp22−114

    [5]

    Au W W L, Popper A N, Fay R R 2000 Hearing by Whales and Dolphins (New York: Springer-Verlag) pp364−469

    [6]

    Au W W L, Hastings M C 2008 Principles of Marine Bioacoustics (New York: Springer) pp534−538

    [7]

    Au W W L, Hammer Jr C E 1980 Animal Sonar Systems (New York: Plenum Press) pp855−858

    [8]

    Delong C M, Au W W L, Stamper S A 2007 J. Acoust. Soc. Am. 121 605Google Scholar

    [9]

    Pailhas Y, Capus C, Brown K, Moore P 2010 J. Acoust. Soc. Am. 127 3809Google Scholar

    [10]

    Delong C M, Au W W L, Lemonds D W, Harley H E, Roitblat H L 2006 J. Acoust. Soc. Am. 119 1867Google Scholar

    [11]

    Muller M W, Allen III J S, Au W W L, Nachtigall P E 2008 J. Acoust. Soc. Am. 124 657Google Scholar

    [12]

    Gaunaurd G C, Brill D, Huang H, Moore P W B, Strifors H C 1998 J. Acoust. Soc. Am. 103 1547Google Scholar

    [13]

    Au W W L, Pawloski D A 1992 J. Comp. Physiol. A 170 41

    [14]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [15]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [16]

    Cranford T W, Krysl P 2015 PLoS One 10 e0116222Google Scholar

    [17]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol. 228 223Google Scholar

    [18]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [19]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [20]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [21]

    Cranford T W, Mckenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hilderbrand H A 2008 Anat. Rec. 291 353Google Scholar

    [22]

    Nachtigall P E 1980 Animal Sonar Systems (New York: Plenum Press) pp71−95

    [23]

    Dubrovskiy N A, Krasnov O S 1971 Tr. Akust. Inst. 17 9

    [24]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [25]

    Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall P E 2012 Proc. R. Soc. London, Ser. B 279 2237

    [26]

    Koblitz J C, Wahlberg M, Stilz P, Madsen P T, Beedholm K, Schnitzler H U 2012 J. Acoust. Soc. Am. 131 2315Google Scholar

    [27]

    Morozov V P, Akopian A I, Burdin V I, Zaitseva K A, Sokovykh Y A 1972 Biofizika 17 139

    [28]

    Au W W L 2004 J. Acoust. Soc. Am. 115 2614

    [29]

    Hammer Jr C E, Au W W L 1980 J. Acoust. Soc. Am. 68 1285Google Scholar

    [30]

    Ibsen S D, Au W W L, Nachtigall P E, DeLong C M, Breese M 2007 J. Acoust. Soc. Am. 122 2446Google Scholar

    [31]

    Au W W L, Pawloski D A 1989 J. Comp. Physiol. A 164 451Google Scholar

    [32]

    Au W W L, Turl C W 1991 J. Acoust. Soc. Am. 89 2448Google Scholar

    [33]

    Au W W L, Martin D W 1988 Animal Sonar: Processes and Performance (New York: Plenum Press) pp809−813

    [34]

    Wisniewska D M, Johnson M, Beedholm K, Wahlberg M, Madsen P T 2012 J. Exp. Biol 215 4358Google Scholar

    [35]

    Finneran J J, Houser D S, Moore P W, Branstetter B K, Trickey J S, Ridgway S H 2010 J. Acoust. Soc. Am. 128 1483Google Scholar

    [36]

    Kellogg W N 1959 J. Comp. Physiol. Psychol. 52 509Google Scholar

    [37]

    Evans W E, Powell B A 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp363−383

    [38]

    Norris K S, Evans W E, Turner R N 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp409−437

    [39]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [40]

    Au W W L 2014 J. Acoust. Soc. Am. 136 9Google Scholar

    [41]

    Belkovich V M, Dubrovskiy N A 1976 Sensory Bases of Cetacean Orientation (Leningrad: Nauka) pp137−148

    [42]

    Diercks K J, Goldsberry T G and Horton C W 1963 J. Acoust. Soc. Am. 35 59Google Scholar

    [43]

    Bel’kovich V M, Borisov V I 1971 Tru. Akust. Inst. 17 19

    [44]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559Google Scholar

    [45]

    Leighton T G, Chua G H, White P 2013 Proceedings of Meetings on Acoustics ICA 2013 Montreal, Canada, June 2, 2013 p19

    [46]

    Au W W L, Branstetter B K, Benoit-Bird K J, Kastelein R A 2009 J. Acoust. Soc. Am. 126 460Google Scholar

    [47]

    Dubrovskiy N A, Krasnov P S, Titov A A 1971 Proceedings of the 7th International Congress on Acoustics Budapest, Hungary, August 24, 1971 p533

    [48]

    Thompson R K R, Herman L M 1975 J. Acoust. Soc. Am. 57 943Google Scholar

    [49]

    Au W W L, Pawloski J L 1989 J. Acoust. Soc. Am. 86 591Google Scholar

    [50]

    Dubrovskiy N A 1990 Sensory Abilities of Cetaceans (New York: Plenum Press) pp233−254

    [51]

    Muller M W, Au W W L, Nachtigall P E, Allen III J S, Breese M 2007 J. Acoust. Soc. Am. 122 2255Google Scholar

    [52]

    Au W W L, Ou H 2014 J. Acoust. Soc. Am. 136 EL67Google Scholar

    [53]

    Zaslavskiy G L, Titov A A, Lekomtsev V M 1969 Tru. Akust. Inst. 8 134

    [54]

    Babkin V P, Dubrovskiy N A 1971 Tru. Akust. Inst. 17 29

    [55]

    Dubrovskiy N A, Titov A A 1975 Akusticheskij Zhurnal 21 469

    [56]

    Murchison A E 1980 Animal Sonar Systems (New York: Plenum Press) pp43−70

    [57]

    Murchison A E 1976 J. Acoust. Soc. Am. 60 S5

    [58]

    Au W W L, Snyder K J 1980 J. Acoust. Soc. Am. 68 1077Google Scholar

    [59]

    Au W W L, Carder D A, Penner R H, Scronce B L 1985 J. Acoust. Soc. Am. 77 726Google Scholar

    [60]

    Au W W L, Moore P W B 1984 J. Acoust. Soc. Am. 75 255Google Scholar

    [61]

    Au W W L, Benoit-Bird K J, Kastelein R 2006 J. Acoust. Soc. Am. 119 3316

    [62]

    Brill R L, Pawloski J L, Helweg D A, Au W W L, Moore P W B 1992 J. Acoust. Soc. Am. 92 1324Google Scholar

    [63]

    Au W W L 1988 Animal Sonar (New York: Plenum Press) pp753−768

    [64]

    Moore P W B, Pawloski D A 1993 J. Acoust. Soc. Am. 94 1829

    [65]

    Au W W L, Andersen L N, Rasmussen A R, Roitblat H L, Nachtigall P E 1995 J. Acoust. Soc. Am. 98 43Google Scholar

    [66]

    Qiao G, Qing X, Feng W, Liu S Z, Nie D H, Zhang Y 2017 J. Acoust. Soc. Am. 142 3787Google Scholar

    [67]

    Feng W, Zhang Y, Wei C 2019 J. Acoust. Soc. Am. 146 1362Google Scholar

    [68]

    Doolittle R D, Überall H 1966 J. Acoust. Soc. Am. 39 272Google Scholar

    [69]

    Gaunaurd, G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [70]

    Feng W, Zhang Y, Wei C 2018 J. Acoust. Soc. Am. 144 1018Google Scholar

    [71]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [72]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J. Acoust. Soc. Am. 106 3699Google Scholar

    [73]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

    [74]

    Torrent D, Sánchez-Dehesa J 2006 Phys. Rev. B 74 224305Google Scholar

    [75]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323Google Scholar

    [76]

    Torrent D, Håkansson A, Cervera F Sánchez-Dehesa J 2006 Phys. Rev. Lett. 96 204302Google Scholar

  • 图 1  宽吻海豚目标探测准确率随距离的变化趋势[58]

    Fig. 1.  Dolphin’s performance as a function of range[58]. Reprinted with permission (RightsLink:https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=a66368f0-df92-40d7-b308-5da5b8b92324).

    图 2  鼠海豚的声波束随目标探测距离的变化趋势[24]

    Fig. 2.  Approximate detection volume for a harbour porpoise tracking fish in a quiet environment and relative change in the size of ensonified area ahead of the porpoise as it approaches a target[24]. Reprinted with permission (RightsLink: https://elifesciences.org/terms).

    图 3  宽带仿生声呐脉冲信号及圆柱壳回波 (a) 仿生脉冲作用于圆柱壳示意图; (b) 仿生脉冲时域特性; (c)目标回波时频特性; (d) 目标回波的镜反射与弹性成分[66]

    Fig. 3.  A biomimetic broadband pulse and echoes from the cylindrical shell: (a) Geometric illustration for a pulse incident upon a shell; (b) waveform of the biomimetic pulse; (c) modified time-frequency of the synthetic echo of targets; (d) extracted elastic echo and the original synthetic echo[66].

    图 4  人类与宽吻海豚的目标识别率随厚度的变化趋势对比[8]

    Fig. 4.  Comparison of performance in identifying the comparison and standard targets between human and dolphin as a function of the wall thickness[8]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=b173fda8-9b88-4bde-943f-ddbed16528ba).

    图 5  目标回波特征 (a) 时域特征; (b) 频域特征[10]; Duration (Dur), Highlight, TS, Peak frequency, Center frequency, rmsBW分别表示时长、局部峰值、目标强度、峰值频率、中心频率与均方根带宽

    Fig. 5.  Echo features. (a) Features in time domain, including duration (line above echo) and number of highlights (marked with asterisks). Target strength is also shown on the bottom of the graph. (b) Features in frequency domain, including peak frequency, center frequency, and rms bandwidth[10]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=34445ac7-c515-4487-bb56-0be555fd3cfc).

    图 6  仿生超声脉冲及与目标回波特性 (a) 仿生超声脉冲信号时域特性; (b) 仿生超声脉冲信号频谱特性; (c) PVC管回波时频特性; (d) 钢管回波时频特性[9]

    Fig. 6.  Biomimetic pulse acts on tubular targets and the echoes: (a) Display of the biomimetic pulse in time domain; (b) power spectrum of the pulse; spectrograms of PVC tube (c) and steel pipe (d) target for the biomimetic pulse[9]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=9f39d17e-b79f-4173-a2fd-bc04cca52724 ).

    图 7  鳕鱼(Cod)、鲻鱼(Mullet)、明太鱼(Pollack)和鲈鱼(Sea bass)回波的时频特征[46]

    Fig. 7.  Time-frequency representation of the echoes using the dolphin-like biosonar signal[46]. Reprinted with permission (RightsLink: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=f7614cb8-8672-41a7-9f83-6f729a0ec2ff).

    图 8  钢球壳回波的时频信息以及滤除镜面反射波后的时频特性[66] (a) 1 mm厚度球壳回波时频特性; (b) 10 mm厚度球壳回波时频特性; (c) 15 mm厚度球壳回波时频特性; (d) 1 mm球壳滤除镜面反射波时频特性; (e) 10 mm球壳滤除镜面反射波时频特性; (f) 15 mm球壳滤除镜面反射波时频特性

    Fig. 8.  The Wigner-Ville distribution of the backscattering echoes of the target with (a) 1 mm, (b) 10 mm, and (c) 15 mm thickness. The corresponding modified distributions of the elastic echoes of the target with (d) 1 mm, (e) 10 mm, and (f) 15 mm thickness[66].

    图 9  江豚目标探测模型构建过程图解及激励波形和功率谱图[67]

    Fig. 9.  A systematic diagram of a biosonar model of an echolocating finless porpoise, where waveform and power spectrum of the excitation click are also presented. The finite element model was constructed based on the CT scan data[67].

    图 10  钢柱与亚克力柱回波的时域与频域特征[67]

    Fig. 10.  Simulated waveforms and frequency spectra of the echoes from steel and acrylic cylinders using finless porpoise’s model[67].

    图 11  江豚声发射系统人工模型及实验测量 (a) 声发射人工模型目标探测示意图; (b) 目标探测实验系统; (c) 无人工模型目标探测时域波形结果; (d) 人工模型目标探测时域波形结果[71]

    Fig. 11.  Bioinspired device and its experiment setup: (a) Schematic showing the experimental setup of the biosonar device (PPM); (b) photograph of the underwater target detection setup; (c) measured pressures of the system without PPM at θ = 20° (lower) and 65° (upper), where Object 1 and its jamming Object 2 were used for underwater detection; (d) pressures of the system with PPM at θ = 20° (lower) and 65° (upper)[71].

  • [1]

    Kinsler L E, Frey A R, Coppens A B, Sanders J V 2000 Fundamentals of Acoustics (New York: Wiley) pp435−470

    [2]

    Urick R J 1983 Principles of Underwater Sound (New York: McGraw- Hill) pp1−16

    [3]

    Au W W L, Simmons J A 2007 Phys. Today 60 40

    [4]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp22−114

    [5]

    Au W W L, Popper A N, Fay R R 2000 Hearing by Whales and Dolphins (New York: Springer-Verlag) pp364−469

    [6]

    Au W W L, Hastings M C 2008 Principles of Marine Bioacoustics (New York: Springer) pp534−538

    [7]

    Au W W L, Hammer Jr C E 1980 Animal Sonar Systems (New York: Plenum Press) pp855−858

    [8]

    Delong C M, Au W W L, Stamper S A 2007 J. Acoust. Soc. Am. 121 605Google Scholar

    [9]

    Pailhas Y, Capus C, Brown K, Moore P 2010 J. Acoust. Soc. Am. 127 3809Google Scholar

    [10]

    Delong C M, Au W W L, Lemonds D W, Harley H E, Roitblat H L 2006 J. Acoust. Soc. Am. 119 1867Google Scholar

    [11]

    Muller M W, Allen III J S, Au W W L, Nachtigall P E 2008 J. Acoust. Soc. Am. 124 657Google Scholar

    [12]

    Gaunaurd G C, Brill D, Huang H, Moore P W B, Strifors H C 1998 J. Acoust. Soc. Am. 103 1547Google Scholar

    [13]

    Au W W L, Pawloski D A 1992 J. Comp. Physiol. A 170 41

    [14]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [15]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [16]

    Cranford T W, Krysl P 2015 PLoS One 10 e0116222Google Scholar

    [17]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol. 228 223Google Scholar

    [18]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [19]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [20]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [21]

    Cranford T W, Mckenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hilderbrand H A 2008 Anat. Rec. 291 353Google Scholar

    [22]

    Nachtigall P E 1980 Animal Sonar Systems (New York: Plenum Press) pp71−95

    [23]

    Dubrovskiy N A, Krasnov O S 1971 Tr. Akust. Inst. 17 9

    [24]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [25]

    Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall P E 2012 Proc. R. Soc. London, Ser. B 279 2237

    [26]

    Koblitz J C, Wahlberg M, Stilz P, Madsen P T, Beedholm K, Schnitzler H U 2012 J. Acoust. Soc. Am. 131 2315Google Scholar

    [27]

    Morozov V P, Akopian A I, Burdin V I, Zaitseva K A, Sokovykh Y A 1972 Biofizika 17 139

    [28]

    Au W W L 2004 J. Acoust. Soc. Am. 115 2614

    [29]

    Hammer Jr C E, Au W W L 1980 J. Acoust. Soc. Am. 68 1285Google Scholar

    [30]

    Ibsen S D, Au W W L, Nachtigall P E, DeLong C M, Breese M 2007 J. Acoust. Soc. Am. 122 2446Google Scholar

    [31]

    Au W W L, Pawloski D A 1989 J. Comp. Physiol. A 164 451Google Scholar

    [32]

    Au W W L, Turl C W 1991 J. Acoust. Soc. Am. 89 2448Google Scholar

    [33]

    Au W W L, Martin D W 1988 Animal Sonar: Processes and Performance (New York: Plenum Press) pp809−813

    [34]

    Wisniewska D M, Johnson M, Beedholm K, Wahlberg M, Madsen P T 2012 J. Exp. Biol 215 4358Google Scholar

    [35]

    Finneran J J, Houser D S, Moore P W, Branstetter B K, Trickey J S, Ridgway S H 2010 J. Acoust. Soc. Am. 128 1483Google Scholar

    [36]

    Kellogg W N 1959 J. Comp. Physiol. Psychol. 52 509Google Scholar

    [37]

    Evans W E, Powell B A 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp363−383

    [38]

    Norris K S, Evans W E, Turner R N 1967 Animal Sonar Systems: Biology and Bionics (Jouy-enJosas: Laboratoire de Physiologie Acoustique) pp409−437

    [39]

    Turner R N, Norris K S 1966 J. Exp. Anal. Behav. 9 535Google Scholar

    [40]

    Au W W L 2014 J. Acoust. Soc. Am. 136 9Google Scholar

    [41]

    Belkovich V M, Dubrovskiy N A 1976 Sensory Bases of Cetacean Orientation (Leningrad: Nauka) pp137−148

    [42]

    Diercks K J, Goldsberry T G and Horton C W 1963 J. Acoust. Soc. Am. 35 59Google Scholar

    [43]

    Bel’kovich V M, Borisov V I 1971 Tru. Akust. Inst. 17 19

    [44]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559Google Scholar

    [45]

    Leighton T G, Chua G H, White P 2013 Proceedings of Meetings on Acoustics ICA 2013 Montreal, Canada, June 2, 2013 p19

    [46]

    Au W W L, Branstetter B K, Benoit-Bird K J, Kastelein R A 2009 J. Acoust. Soc. Am. 126 460Google Scholar

    [47]

    Dubrovskiy N A, Krasnov P S, Titov A A 1971 Proceedings of the 7th International Congress on Acoustics Budapest, Hungary, August 24, 1971 p533

    [48]

    Thompson R K R, Herman L M 1975 J. Acoust. Soc. Am. 57 943Google Scholar

    [49]

    Au W W L, Pawloski J L 1989 J. Acoust. Soc. Am. 86 591Google Scholar

    [50]

    Dubrovskiy N A 1990 Sensory Abilities of Cetaceans (New York: Plenum Press) pp233−254

    [51]

    Muller M W, Au W W L, Nachtigall P E, Allen III J S, Breese M 2007 J. Acoust. Soc. Am. 122 2255Google Scholar

    [52]

    Au W W L, Ou H 2014 J. Acoust. Soc. Am. 136 EL67Google Scholar

    [53]

    Zaslavskiy G L, Titov A A, Lekomtsev V M 1969 Tru. Akust. Inst. 8 134

    [54]

    Babkin V P, Dubrovskiy N A 1971 Tru. Akust. Inst. 17 29

    [55]

    Dubrovskiy N A, Titov A A 1975 Akusticheskij Zhurnal 21 469

    [56]

    Murchison A E 1980 Animal Sonar Systems (New York: Plenum Press) pp43−70

    [57]

    Murchison A E 1976 J. Acoust. Soc. Am. 60 S5

    [58]

    Au W W L, Snyder K J 1980 J. Acoust. Soc. Am. 68 1077Google Scholar

    [59]

    Au W W L, Carder D A, Penner R H, Scronce B L 1985 J. Acoust. Soc. Am. 77 726Google Scholar

    [60]

    Au W W L, Moore P W B 1984 J. Acoust. Soc. Am. 75 255Google Scholar

    [61]

    Au W W L, Benoit-Bird K J, Kastelein R 2006 J. Acoust. Soc. Am. 119 3316

    [62]

    Brill R L, Pawloski J L, Helweg D A, Au W W L, Moore P W B 1992 J. Acoust. Soc. Am. 92 1324Google Scholar

    [63]

    Au W W L 1988 Animal Sonar (New York: Plenum Press) pp753−768

    [64]

    Moore P W B, Pawloski D A 1993 J. Acoust. Soc. Am. 94 1829

    [65]

    Au W W L, Andersen L N, Rasmussen A R, Roitblat H L, Nachtigall P E 1995 J. Acoust. Soc. Am. 98 43Google Scholar

    [66]

    Qiao G, Qing X, Feng W, Liu S Z, Nie D H, Zhang Y 2017 J. Acoust. Soc. Am. 142 3787Google Scholar

    [67]

    Feng W, Zhang Y, Wei C 2019 J. Acoust. Soc. Am. 146 1362Google Scholar

    [68]

    Doolittle R D, Überall H 1966 J. Acoust. Soc. Am. 39 272Google Scholar

    [69]

    Gaunaurd, G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [70]

    Feng W, Zhang Y, Wei C 2018 J. Acoust. Soc. Am. 144 1018Google Scholar

    [71]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [72]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J. Acoust. Soc. Am. 106 3699Google Scholar

    [73]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

    [74]

    Torrent D, Sánchez-Dehesa J 2006 Phys. Rev. B 74 224305Google Scholar

    [75]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323Google Scholar

    [76]

    Torrent D, Håkansson A, Cervera F Sánchez-Dehesa J 2006 Phys. Rev. Lett. 96 204302Google Scholar

  • [1] 郑昊哲, 刘圆圆, 王力, 程建平. 液氩探测器在稀有事例探测中的应用和发展. 物理学报, 2023, 72(5): 052901. doi: 10.7498/aps.72.20222055
    [2] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法. 物理学报, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [3] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [4] 宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉. 齿鲸生物声呐发射特性与波束调控研究. 物理学报, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [5] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [6] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [7] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用. 物理学报, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [8] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [9] 寇添, 于雷, 周中良, 王海晏, 阮铖巍, 刘宏强. 机载光电系统探测空中机动目标的光谱辐射特征研究. 物理学报, 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [10] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究. 物理学报, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [11] 徐孝彬, 张合, 张祥金, 陈杉杉, 张伟. 脉冲激光探测平面目标特性对测距分布的影响. 物理学报, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [12] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响. 物理学报, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [13] 连天虹, 王石语, 蔡德芳, 李兵斌, 过振. 多子光束相干发射小目标探测研究. 物理学报, 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [14] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [15] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法. 物理学报, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [16] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [17] 李鲠颖, 潘涛, 夏小建. 压电体的远程探测. 物理学报, 1997, 46(2): 400-405. doi: 10.7498/aps.46.400
    [18] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [19] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] А.Ф.杜纳耶切夫, Ю.Д.布罗高舒金, 唐孝威. π-介子星裂探测器. 物理学报, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
计量
  • 文章访问数:  8046
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-03-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回