搜索

x
中国物理学会期刊

基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究

CSTR: 32037.14.aps.70.20210451

Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method

CSTR: 32037.14.aps.70.20210451
PDF
HTML
导出引用
  • 研究非牛顿流体转捩问题, 可为调控非牛顿流体动力特性提供理论基础. 相对于牛顿流体转捩问题, 非牛顿流体转捩研究较少, 缺乏转捩雷诺数精细预报方法. 论文以格子Boltzmann方法为核心求解器, 以典型非牛顿流体幂律模型为例, 开展了幂律流体二维顶盖驱动流转捩模拟, 给出剪切变稀和剪切增稠流体的第一转捩雷诺数, 并分析了转捩雷诺数附近流场时频域特性及模态分布. 结果表明, 剪切变稀流体和剪切增稠流体的第一转捩雷诺数与牛顿流体差异显著, 且在转捩临界雷诺数附近监控点处速度分量均呈现周期性变化趋势. 通过对流场速度和涡量的本征正交分解发现, 不同类型的流体在转捩临界雷诺数附近, 前两阶模态均为流场的主模态, 能量占比超过95%, 且同类型流体不同雷诺数的主模态间具有相似的结构.

     

    Studying transitions from laminar to turbulence of non-Newtonian fluids can provide a theoretical basis to further mediate their dynamic properties. Compared with Newtonian fluids, transitions of non-Newtonian fluids turning are less focused, thus being lack of good predictions of the critical Reynolds number (Re) corresponding to the first Hopf bifurcation. In this study, we employ the lattice Boltzmann method as the core solver to simulate two-dimensional lid-driven flows of a typical non-Newtonian fluid modeled by the power rheology law. Results show that the critical Re of shear-thinning (5496) and shear-thickening fluids (11546) are distinct from that of Newtonian fluids (7835). Moreover, when Re is slightly larger than the critical one, temporal variations of velocity components at the monitor point all show a periodic trend. Before transition of the flow filed, the velocity components show a horizontal straight line, and after transition , the velocity components fluctuate greatly and irregularly. Through fast Fourier transform for the velocity components, it is noted that the velocity has a dominant frequency and a harmonic frequency when Re is marginally larger than the critical one. Besides, the velocity is steady before transition of flow filed, so it appears as a point on the frequency spectrum. As the flow filed turns to be turbulent, the frequency spectrum of the velocity component appears multispectral. Different from a single point in the velocity phase diagram before transition, the velocity phase diagram after transition forms a smooth and closed curve, whose area is also increasing as Re increases. The center point of the curve moves along a certain direction, while movement directions of different center points are different. Proper orthogonal decompositions for the velocity and vorticity field reveal that the first two modes, in all types of fluids, are the dominant modes when Re is close to the critical one, with energy, occupying more than 95% the whole energy. In addition, for one type of fluid, the dominant modes at different Re values have similar structures. Results of the first and second modes of velocity field show that the modal peak is mainly distributed in vicinity of the cavity wall.

     

    目录

    /

    返回文章
    返回