搜索

x
中国物理学会期刊

SrCoO2.5材料的超快应变动力学

CSTR: 32037.14.aps.70.20210457

Ultrafast strain dynamics in SrCoO2.5 thin films

CSTR: 32037.14.aps.70.20210457
PDF
HTML
导出引用
  • 光激发引起的物质晶格结构的动态变化是一个复杂的超快动力学过程. 本文利用Thomsen模型与超快X射线衍射模拟相结合, 研究了SrCoO2.5晶格中应力产生和传播的过程, 发现不同厚度的SrCoO2.5样品在受激光照射加热后, 其衍射峰会出现连续位移或分裂的现象, 当样品厚度增大时, 其受到激光的激发会较薄样品更不均匀, 因此厚样品内部应变的产生和传播同样具有不均匀性, 反映出激光激发空间的变化会导致样品热应力特征的改变, 这也是不同厚度样品超快衍射信号存在差异的原因. 本文有助于理解激光诱导的应变的产生与传播, 为研究光激发钴基钙钛矿材料的超快晶格动力学提供了理论分析的依据.

     

    In order to understand the relationship between the structure of materials and its function, it is necessary to investigate the changes of the transient structure of materials over time. Laser-based plasma X-ray sources are currently widely used in the study of ultrafast structure dynamics in condensed matter due to their miniaturization and ultrahigh spatial-temporal resolution. Strongly correlated transition-metal oxides have attracted enormous attention due to their peculiar properties, among them Co-based oxides has now become one of the most promising candidates for renewable energy applications. With the variation of the oxygen stoichiometry, the physical properties of SrCoO3–x, ferromagnetic metal perovskite SrCoO3 and antiferromagnetic insulator brownmillerite SrCoO2.5 can be reversibly transferred. Besides, the various complex physical properties make SrCoO2.5 quite popular for fundamental research, the development of solid oxide fuel cells, etc. However, the research of its dynamic behavior under transient photo-excitation is still limited. Therefore, it is necessary to study the strain fields of SrCoO2.5 films with different thickness.
    This report focuses on the structural dynamics of SrCoO2.5 films induced by ultrashort laser pulses. The ultrafast X-ray diffraction simulations exhibit transient changes of Bragg peak positions of the SrCoO2.5 excited by laser. By studying the 40 nm- and 60 nm-thick samples, we observe a continuous shift of the Bragg peak towards lower angels at first and then a backshift until it reaches a new equilibrium. In contrast, the 100 nm-thick SrCoO2.5 film exhibits a transient splitting of Bragg peak into two distinct parts until the initial peak disappears. For further research, we use Thomsen model to simulate the generation and evolution of acoustic deformation of SCO2.5 thin film on a substrate supporting the LaAlO3 film. In the case of the thicker film, we find that an inhomogeneity of temperature distribution will lead its thermal stress characteristics to change, and result in the transient splitting of Bragg peak. We believe that this work is important for analyzing the laser excited ultrafast dynamics of cobalt-based perovskite materials.

     

    目录

    /

    返回文章
    返回