搜索

x
中国物理学会期刊

基于反射超表面的偏馈式涡旋波产生装置

CSTR: 32037.14.aps.70.20210681

Offset-fed vortex wave generator based on reflective metasurface

CSTR: 32037.14.aps.70.20210681
PDF
HTML
导出引用
  • 由于具有拓宽信道的能力, 携带轨道角动量的涡旋电磁波已经受到越来越多学者的研究. 目前, 基于反射式涡旋波发生装置仍然存在两个问题需要解决: 1) 馈源的遮挡; 2) 由馈源和反射表面所引起的交叉极化分量. 本文提出了一种基于超表面的偏馈式涡旋波产生装置, 该装置包括超表面反射阵和非正对区域放置的天线馈源. 本文主要贡献为以下三方面: 1) 设计了一种几何相位的超表面单元; 2) 主、交叉极化的转化过程被详细分析; 3) 具体的偏馈式涡旋波产生装置被设计. 通过合理设计超表面单元, 实现了仅对馈源主极化场的相位补偿与汇聚调控, 最终在期望的观测位置形成具有场增强效果的低交叉极化涡旋波. 仿真与实验分别验证了极化选择特性与汇聚涡旋波的形成. 该装置结构简单, 具有极化选择性和区域场增强效果, 对涡旋波通信及相关应用具有潜在价值.

     

    Orbital angular momentum, as a basic physical quantity of electromagnetic waves, has been widely studied since 1992. Recently, the geometric phase metasurface, which is also known as Pancharatnam-Berry (P-B) phase metasurface, has been proposed. Because of its frequency-independent and angle-dependent phase control characteristics, it can generate high-performance and broadband vortex wave. However, the current design of reflective metasurface encounters the following problems: 1) the reflected vortex wave is partly blocked by the feeding antenna; 2) in practical applications, the cross-polarized field will inevitably be induced due to the feed antenna and the reflective metasurface. How to avoid the cross-polarization is still worth further investigating. In this work, an offset-fed vortex wave generator is proposed. It consists of a right-handed circularly polarized Archimedes spiral antenna and a reflective metasurface. Firstly, the offset feeding design is introduced to avoid generating the cross-polarized fields caused by the feeding antenna. A geometric meta-atom of the reflective metasurface is designed at a working frequency of 8.5 GHz. By regularly arranging meta-atoms with different orientation angles, the convergence and phase compensation functions are imparted only to the co-polarization field. The cross-polarized field is intentionally weakened and refracted along other directions. Subsequently, a low cross-polarized vortex wave with an enhancement effect is obtained at the desired observation position. There are three contributions made in this work: 1) a P-B meta-atom is proposed to fabricate the reflective metasurface; 2) the conversion relationship between the co-polarized and cross-polarized field is studied from the initial state to the final state, and the four transformation processes are demonstrated in detail; 3) an offset-fed vortex wave generator is established which allows one to generate high-performance vortex beam with arbitrary OAM mode. The experimental results are in good agreement with those simulation results, proving the proposed method effective and feasible. The proposed design shows its advantages including simple structure, polarization selectivity, and regional field enhancement effect, which has great potential applications in vortex wave communication and OAM-based target detection.

     

    目录

    /

    返回文章
    返回