搜索

x
中国物理学会期刊

基于激光外差探测的大气N2O吸收光谱测量与廓线反演

CSTR: 32037.14.aps.70.20210710

Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection

CSTR: 32037.14.aps.70.20210710
PDF
HTML
导出引用
  • 激光外差光谱探测由于其光谱分辨率高、体积小、重量轻等优点近年来得到了快速的发展, 可用于大气温室气体垂直廓线测量和碳卫星地面定标等. 本文报道了利用3.939 µm带间级联激光器作为本振光源的测量大气N2O的激光外差系统, 自制高精度太阳跟踪仪收集太阳光作为激光外差的信号光源, 其跟踪精度达到7 arcsec, 激光外差系统的光谱分辨率达到0.004 cm–1, 测量了合肥地区(31.902°N, 117.167°E)大气N2O吸收光谱, 得到2838.336和2539.344 cm–1两个强吸收峰, 并对吸收信号进行波长标定, 得到了N2O分子的整层大气透过率谱, 信噪比为93. 将高分辨率光谱数据进行归一化处理和频率校正, 利用参考正向模型和最优估计算法得到N2O大气整层浓度廓线, 标准偏差体积分数为0.000031 × 10–6—0.0026 × 10–6, 对应相对误差范围为0.009%—0.83%. 研究结果表明, 所搭建的激光外差系统能够实现对大气中N2O的吸收光谱测量以及对N2O的廓线反演, 为长期观测大气N2O浓度提供保证.

     

    aser heterodyne spectroscopy detection has rapidly developed in recent years due to its high spectral resolution, small size, and light weight. It can be used to measure the atmospheric greenhouse gas vertical profile and calibrate the carbon satellite ground. This paper reports a laser heterodyne system for measuring atmospheric N2O, with a 3.939-µm interband cascade laser used as a local oscillator light source. A homemade high-precision solar tracker collects sunlight as a laser heterodyne signal source. The tracking accuracy reaches 7 arcsec, and the spectral resolution of the laser heterodyne system arrives at 0.004 cm–1. The atmospheric N2O absorption spectrum in Hefei area (31.902°N, 117.167°E) is measured, and two strong absorption peaks respectively at 288.336 and 2539.344 cm–1 are obtained. In addition, the wavelength calibration of the absorption signal, and the entire atmospheric transmittance spectrum of N2O molecules are obtained, and the signal-to-noise ratio is 93. The high-resolution spectrum data are normalized and frequency is corrected, and the N2O atmospheric concentration profile is obtained by using the reference forward model and the optimal estimation algorithm. The standard deviation of volume fraction is in a range of 0.000031—0.0026 ppm, and the corresponding relative error range is 0.009%—0.83%. The research results show that the laser heterodyne system built in this work can be used to measure the absorption spectrum of N2O in the atmosphere and realize the inversion of the N2O profile, which provides a guarantee for long-term observation of atmospheric N2O concentration.

     

    目录

    /

    返回文章
    返回