搜索

x
中国物理学会期刊

MAX及其衍生MXene相碳化物的热电性能及展望

CSTR: 32037.14.aps.70.20211050

Thermoelectric properties and prospects of MAX phases and derived MXene phases

CSTR: 32037.14.aps.70.20211050
PDF
HTML
导出引用
  • 热电材料无需提供其他能量就能直接实现热能和电能的相互转换, 是一种新型能源材料, 然而当前热电材料的发展现状严重制约了热电器件的工程化应用, 提高现有热电材料的热电性能或研发具有优异性能的新型热电材料是热电领域永恒的研究主题. 近年来, MAX及其衍生MXene相材料由于特有的结构性能而逐渐进入了科研工作者的视线, MAX 相的晶体结构由Mn+1Xn 结构单元与A 元素单原子面交替堆垛排列而成, MAXA层原子被刻蚀之后可以制备得到对应的衍生二维MXene相, MAX及其衍生MXene相陶瓷兼具金属和陶瓷的特性, 具有良好的导热导电性能, 有望成为一种非常有前景的热电材料. 本文简要综述了近年来MAX相及其衍生MXene相材料的制备技术和热电性能的发展现状, 并针对MAX及其衍生MXene相材料的特性提出了一些改善热电性能的可行性方案, 据此展望了MAX相以及MXene材料在未来的发展方向和前景.

     

    Thermoelectric materials, a kind of new energy material, can directly convert heat energy into electric energy, and vice versa, without needing any other energy conversion. However, the present development status of thermoelectric materials severely restricts their engineering applications in thermoelectric devices. Improving the thermoelectric performances of existing thermoelectric materials and exploring new thermoelectric materials with excellent performance are eternal research topics in thermoelectricity field. In recent years, the MAX phases and their derived MXene phases have gradually received the attention of researchers due to their unique microstructures and properties. The crystal structure of MAX phases is comprised of Mn+1Xn structural units and the single atomic plane of A stacked alternately. The two-dimensional MXene phase derived can be prepared after the atoms in the A-layer of MAX have been etched. The MAX phases and their derived MXene phases have both metal feature and ceramic feature, and also have good thermal conductivity and electric conductivity, and they are anticipated to be the promising thermoelectric materials. In this paper, the present development status of the preparation technology and the thermoelectric properties of MAX phases and MXene are reviewed. Finally, some feasible schemes to improve the thermoelectric properties of MAX and its derived MXene phase materials are proposed, and the development direction and prospect of MAX phases and MXene are prospected as well.

     

    目录

    /

    返回文章
    返回