搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前驱体膜处理工艺制备高性能碳基CsPbIBr2钙钛矿太阳能电池

韩思奇 张海明 何青辰 李育洁 王汝峰

引用本文:
Citation:

前驱体膜处理工艺制备高性能碳基CsPbIBr2钙钛矿太阳能电池

韩思奇, 张海明, 何青辰, 李育洁, 王汝峰

High-performance carbon- based CsPbIBr2 perovskite solar cells fabricated by precursor film preparation process

Han Si-Qi, Zhang Hai-Ming, He Qing-Chen, Li Yu-Jie, Wang Ru-Feng
PDF
HTML
导出引用
  • 全无机CsPbIBr2钙钛矿材料由于兼顾了光学性能和稳定性而受到人们广泛关注. 然而, 传统一步旋涂法下制备的CsPbIBr2薄膜通常存在较多缺陷, 导致电池器件效率难以提升. 考虑到常规反溶剂法工艺窗口较窄且重复性差的问题, 提出一种前驱体膜处理工艺以制备高效稳定的碳基CsPbIBr2电池. 以异丙醇(IPA)作为反溶剂, 通过调控前驱体膜中二甲基亚砜(DMSO)的蒸发速率进而调整钙钛矿的形核位置, 并在IPA中加入了硫氰酸胍(C2H4N4S)作为钝化剂来调控钙钛矿的成核及结晶过程. 结果表明, 优化后的CsPbIBr2薄膜致密性有明显提升, 结晶性以及晶粒的取向性有所改善, 具有更好的载流子分离和传输效率. 制备的电池器件光电转换效率最高达到6.71%, 与参比器件5.29%的效率相比提升了近21.16%. 此外, 经前驱体膜处理工艺后制备的钙钛矿电池具备更高的稳定性. 本研究旨在提出一种新的制备技术来提高全DMSO溶剂体系下无机钙钛矿薄膜的质量.
    All-inorganic perovskite has attracted extensive attention due to its photovoltaic properties and stability. Typically, the α-phase CsPbI3 has an ideal bandgap of 1.73 eV suitable for the construction of high performance inorganic PSCs. But it suffers phase instability under ambient condition because of the unsatisfactory tolerance factor. By incorporating Br atoms into the perovskite structure, can greatly enhance the phase stability can be greatly enhanced. For example, CsPbBr3 shows an excellent ambient stability and a wide bandgap of 2.3 eV that results in a limited light absorbtion. With the consideration from the unified perspective of the bandgap and the ambient phase stability, CsPbIBr2 has a relatively appropriate bandgap (2.05 eV) and higher stability than CsPbI3 and CsPbI2Br, which is made a good option for stable and efficient PSCs. However, there exist numerous defects on the CsPbIBr2 film prepared by conventional one-step deposition method, which seriously affect the photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs). Considering the short dripping time and poor reproducibility of conventional anti-solvent technology, a precursor film preparation process is proposed to fabricate efficient and stable carbon-based CsPbIBr2 perovskite solar cells. Using isopropyl alcohol (IPA) as the anti-solvent, the nucleation position of perovskite can be adjusted by regulating the evaporation rate of DMSO in the precursor film. In addition, guanidine thiocyanate (C2H4N4S) is added into IPA solution as a passivator to regulate the nucleation and crystallization process of perovskite. The carboxylic acid group of C2H4N4S can crosslink to Pb2+ of CsPbIBr2 via a chelating interaction, resulting in the easier decomposition of the CsI-DMSO-PbBr2 intermediate phase in the spin-coating process of the precursor film. The amino group of C2H4N4S can also promote the crystallization and suppress the ion migration of the perovskite film through hydrogen bonds. The result shows that the compactness of the optimized CsPbIBr2 film is significantly improved and the average grain size is about 800nm. The crystallinity and grain orientation are improved, and thus achieving better carrier separation and transport efficiency. The highest PCE of carbon-based CsPbIBr2 PSC is obviously improved from 5.29% to 6.71%, i.e. increased by almost 21.16% compared with the control sample. Furthermore, the PSCs with precursor film preparation process possesses better long-term stability. The results obtained in this paper demonstrate that the new preparation technology can improve the quality of inorganic perovskite films in pure DMSO solvent system.
      通信作者: 张海明, zhmtjwl@163.com
    • 基金项目: 天津市自然科学基金(批准号: 20JCZDJC00060)、国家自然科学基金(批准号: 62073240)、天津市教委科研计划项目(批准号: 2020KJ087)和天津市科技特派员项目(20YDTPJC00620)资助的课题.
      Corresponding author: Zhang Hai-Ming, zhmtjwl@163.com
    • Funds: Project supported by Natural Science Foundation of Tianjin, China(Grant No. 20JCZDJC00060), the National Natural Science Foundation of China (Grant No. 62073240 ), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China(Grant No.2020KJ087), and Tianjin Science and Technology Commissioner Project, China (Grant No. 20YDTPJC0062).
    [1]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [2]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [3]

    https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).

    [4]

    Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.

    [5]

    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar

    [6]

    Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [7]

    Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar

    [8]

    Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar

    [9]

    Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar

    [10]

    Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar

    [11]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar

    [12]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [13]

    Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar

    [14]

    Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar

    [15]

    Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar

    [16]

    Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290

    [17]

    Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar

    [18]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar

    [19]

    Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar

    [20]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [21]

    Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar

    [22]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.

    [23]

    Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar

    [24]

    Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar

    [25]

    Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar

    [26]

    Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar

    [27]

    Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar

    [28]

    Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar

    [29]

    Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar

    [31]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar

    [32]

    Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar

    [33]

    Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar

    [34]

    Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512

    [35]

    Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar

  • 图 1  (a) CsPbIBr2薄膜制备流程图; (b) 钙钛矿太阳能电池器件结构示意图; (c) 钙钛矿太阳能电池SEM截面图

    Fig. 1.  (a) Schematic process for the preparation of CsPbIBr2; (b) schematic of architecture; (c) cross-sectional SEM view of the device structure.

    图 2  不同制备工艺下前驱体薄膜表面照片 (a) 传统方法; (b) IPA处理; (c) IPA处理、C2H4N4S钝化(0.4 mg/ml)

    Fig. 2.  Optical images of precursor film under different preparation processes: (a) conventional method; (b) adding IPA solution; (c) adding IPA solution with 0.4 mg/ml of C2H4N4S.

    图 3  不同制备工艺下CsPbIBr2薄膜表面SEM图 (a) 传统方法; (b) IPA处理; (c) IPA处理、C2H4N4S钝化(0.4 mg/ml); (d) IPA处理、C2H4N4S钝化(0.8 mg/ml); 对应器件截面SEM图 (e−h)

    Fig. 3.  SEM images of CsPbIBr2 film under different preparation processes: (a) Conventional method; (b) adding IPA solution; (c) adding IPA solution with 0.4 mg/ml of C2H4N4S; (d) adding IPA solution with 0.8 mg/ml of C2H4N4S; (e−h) corresponding crosssectional SEM images.

    图 4  不同制备工艺下CsPbIBr2薄膜 (a) XRD谱图; (b) XPS谱图

    Fig. 4.  CsPbIBr2 film under different preparation processes: (a) XRD patterns; (b) XPS spectrum.

    图 5  不同制备工艺下CsPbIBr2薄膜 (a) UV-Vis谱图; (b) Tauc plot谱图

    Fig. 5.  CsPbIBr2 film under different preparation processes: (a) UV-vis absorbance spectra; (b) Tauc plots.

    图 6  不同制备工艺下CsPbIBr2薄膜 (a) PL谱图; (b) TRPL谱图

    Fig. 6.  CsPbIBr2 film under different preparation processes: (a) PL spectra; (b) TRPL spectra.

    图 7  不同制备工艺下器件 (a) J-V曲线; (b) 外量子效率(external quantum efficiency, EQE)和积分电流曲线; (c) 电化学阻抗谱

    Fig. 7.  PSCs under different preparation processes: (a) J-V curves; (b) EQE spectra along with integrated current densities; (c) Nyquist plots.

    图 8  不同制备工艺下器件稳定性测试

    Fig. 8.  Stability of PSCs under different preparation processes.

    表 1  不同C2H4N4S浓度下钙钛矿电池性能指标

    Table 1.  Photovoltaic Parameters of PSCs based on different concentration of C2H4N4S

    PerovskiteJsc/mA cm–2Voc/VFF/%PCE/%
    Control8.251.1953.525.29
    IPA9.191.2153.775.95
    IPA+0.2 mg/mL C2H4N4S10.321.2150.106.24
    IPA+0.4 mg/mL C2H4N4S10.611.2352.406.71
    IPA+0.6 mg/mL C2H4N4S10.891.1950.126.38
    IPA+0.8 mg/mL C2H4N4S10.301.1949.426.07
    注: FF即填充因子(fill factor); PCE即光电转换效率(photoelectric conversion efficiency).
    下载: 导出CSV
  • [1]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [2]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [3]

    https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).

    [4]

    Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.

    [5]

    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar

    [6]

    Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [7]

    Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar

    [8]

    Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar

    [9]

    Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar

    [10]

    Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar

    [11]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar

    [12]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [13]

    Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar

    [14]

    Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar

    [15]

    Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar

    [16]

    Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290

    [17]

    Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar

    [18]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar

    [19]

    Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar

    [20]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [21]

    Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar

    [22]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.

    [23]

    Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar

    [24]

    Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar

    [25]

    Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar

    [26]

    Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar

    [27]

    Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar

    [28]

    Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar

    [29]

    Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar

    [31]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar

    [32]

    Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar

    [33]

    Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar

    [34]

    Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512

    [35]

    Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar

  • [1] 王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾. Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计. 物理学报, 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [4] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [6] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [7] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [8] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [9] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [10] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [11] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [12] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [13] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [15] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析. 物理学报, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [16] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [17] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  6210
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-07-05
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回