搜索

x
中国物理学会期刊

大密度比气泡在含非对称障碍物微通道内的运动行为

CSTR: 32037.14.aps.70.20211328

Behavior of bubble with high density ratio in a microchannel with asymmetric obstacles

CSTR: 32037.14.aps.70.20211328
PDF
HTML
导出引用
  • 采用格子玻尔兹曼方法研究了含非对称障碍物微通道内气泡变形、分裂、上升速度、以及剩余质量比的变化规律. 研究结果表明, 首先, 气泡在穿过通道的过程中变形加剧时其上升速度会减小. 其次, 随着Eötvös数增加, 气泡在穿过障碍物的过程中形变越来越严重, 速度越来越大且通过时间越来越小. 除此之外, 随着气液黏度比增加, 气泡变形更严重, 上升速度显著增加, 且气泡剩余质量比减少. 另一方面, 随着障碍物纵向距离增加, 气泡通过障碍物的时间减少, 而气泡的剩余质量比呈现近似不变-增加-减小-增加的变化趋势. 再者, 为了研究障碍物横向距离对气泡运动形态的影响, 考虑了两种情况: 一是两障碍物长度同时改变; 二是仅改变单侧障碍物长度. 结果表明, 对于以上两种情况, 当横向距离较小时, 仅改变单侧障碍物长度造成气泡通过障碍物的时间更长. 最后, 研究结果还表明当右侧障碍物宽度足够大时, 气泡离开障碍物时的位置几乎不变, 而随着右侧障碍物宽度的增加, 气泡穿过障碍物的时间缓慢增加, 气泡的剩余质量比先近似不变然后大幅下降最后又保持近似不变.

     

    Bubbles are existent everywhere and of great importance for the daily life and industry process, such as heat exchange rate influenced by bubbles in the tube, battery life partially decided by bubbles of chemical reaction in it, etc. With the further requirement for miniaturization, physical mechanisms behind bubble behaviors in microchannels become crucial. In the present work, the lattice Boltzmann method is used to investigate the behavior of bubbles as they rise in complex microchannels under the action of buoyancy. The channel is placed with two asymmetric obstacles on its left and right side. Initially, the lattice Boltzmann model is tested for its reliability and accuracy by Laplace law. Then a few parameters of flow field, i.e. the Eötvös number, the viscosity ratio, the vertical distance between the obstacles, the horizontal distance between the obstacles, are employed to study the characteristics of the bubble during the movement, including the deformation, the rising speed, the residual mass, and the time of bubble passing through the channel. The results are shown below. First, the trend of the bubble's velocity changing with time in the process of passing through the channel corresponds to the change process of the dynamic behavior of the interface, i.e. the bubble velocity decreases when the bubble shape changes significantly under the same channel width. Second, with the increase of Eo number, the bubble deformation as well as the bubble velocity increases and the bubble residual mass decreases. Besides, the gas-to-liquid viscosity ratio has a significant effect on the bubble velocity. Under the condition of high viscosity ratio, the bubble shape is difficult to maintain a round shape, while the bubble rise velocity increases and the residual mass of the bubble decreases with the viscosity ratio. What is more, when the obstacle setting is changed, the longer the vertical distance between the two asymmetric obstacles, the shorter the bubble passing time is, and the faster it will return to the original shape after passing through the obstacle, while the residual mass of the bubble shows a change trend of approximately unchanged-increase-decrease-increase with the augment of the vertical distance between the obstacles. In the study of changing the horizontal spacing, two cases: the two obstacles are changed at the same time (Case A) and only the one-sided obstacle is changed (Case B), are considered. The results show that under the same small horizontal interval, the obstruction effect caused by changing only the length of one side obstacle is stronger. Finally, the study shows that when the width of the right obstacle is long enough, although the width of the obstacle continues to increase, the passing time of the bubble increases slowly, and the position of the bubble leaving from the obstacle is always approximately the same.

     

    目录

    /

    返回文章
    返回