搜索

x
中国物理学会期刊

基于金刚石固态单自旋的纳米尺度零场探测

CSTR: 32037.14.aps.70.20211363

Nanoscale zero-field detection based on single solid-state spins in diamond

CSTR: 32037.14.aps.70.20211363
PDF
HTML
导出引用
  • 在单分子层面对物质的特性进行表征在当今科学发展中有着重要意义, 例如生物、化学、材料科学等. 通用纳米尺度传感器的到来有望实现物质科学的一个长远目标—室温大气环境下的单分子结构解析. 近些年来, 金刚石中氮-空位(NV)色心作为一种固态自旋逐渐发展成兼具高空间分辨率和高探测灵敏度的纳米尺度传感器. 由于其无损、非侵入的特性, 在单分子测量方面具有非常出色的表现. 到目前为止, NV传感器已经实现了对磁场、电场、温度等诸多物理量的高灵敏度探测, 是一种潜在的多元化量子传感器. 结合多角度的交叉测量, 有助于提升对新物质、新材料、新现象的认识与理解. 本文从NV传感器的微观结构出发, 简要介绍了在零场这一特殊磁场条件下的几篇探测工作, 包括零场的顺磁共振探测和电场探测.

     

    Characterizing the properties of matter at a single-molecule level is highly significant in today’s science, such as biology, chemistry, and materials science. The advent of generalized nanoscale sensors promises to achieve a long-term goal of material science, which is the analysis of single-molecule structures in ambient environments. In recent years, the nitrogen-vacancy (NV) color centers in diamond as solid-state spins have gradually developed as nanoscale sensors with both high spatial resolution and high detection sensitivity. Owing to the nondestructive and non-invasive properties, the NV color centers have excellent performance in single-molecule measurements. So far, the NV centers have achieved high sensitivity in the detection of many physical quantities such as magnetic field, electric field, and temperature, showing their potential applications in versatile quantum sensors. The combination with the cross measurements from multiple perspectives is conducible to deepening the knowledge and understanding the new substances, materials, and phenomena. Starting from the microstructure of NV sensors, several detections under the special magnetic field condition of zero field, including zero-field paramagnetic resonance detection and electric field detection, are introduced in this work.

     

    目录

    /

    返回文章
    返回