搜索

x
中国物理学会期刊

水的氢键网络动力学与其太赫兹频谱的关系

CSTR: 32037.14.aps.70.20211731

Relationship between hydrogen bond network dynamics of water and its terahertz spectrum

CSTR: 32037.14.aps.70.20211731
PDF
HTML
导出引用
  • 水是万物生命之源, 认识水的太赫兹吸收谱是太赫兹技术在生物医学上应用的前提, 太赫兹频率的选择对高效、低能耗地实现太赫兹的生物效应至关重要. 水的复杂氢键网络使得其具有较宽的太赫兹吸收峰, 因此有必要研究水的氢键网络动力学与其太赫兹吸收谱之间的关系, 然而这方面的研究仍然非常缺乏. 采用分子动力学模拟方法, 本文研究了不同水模型在常温常压下的太赫兹吸收谱, 并且进一步基于温度研究了水的太赫兹吸收谱对氢键网络强弱的依赖性, 发现温度的升高会使氢键网络的太赫兹吸收谱发生红移, 这表明氢键网络的太赫兹吸收谱的中心频率与氢键相互作用的强弱具有强关联, 更进一步的研究表明水中氢键网络的氢键寿命与氢键网络振动的吸收峰的中心频率之间存在线性关系. 这一现象背后的物理能够通过将氢键网络中的氢键类比为弹簧借助弹簧振子模型加以描述. 本文的发现将有利于理解水中复杂的氢键网络动力学, 以及促进太赫兹的生物效应研究.

     

    Water is the source of all life. The understanding of the terahertz absorption spectrum of water is the prerequisite for the application of terahertz technology to biomedicine. The choice of terahertz frequency is essential for achieving the biological effects of terahertz with high efficiency and low energy consumption. The complex hydrogen bond network of water possesses a broad terahertz absorption peak. Therefore, it is necessary to study the relation between the dynamics of the hydrogen bond network of water and its terahertz absorption spectrum. However, the research in this field is still lacking. Using molecular dynamics simulation methods, the terahertz absorption spectra of different water models at room temperature and pressure are studied in this work. Furthermore, taking the temperature as a variable, the dependence of the terahertz absorption spectrum of water on the strength of the hydrogen bond network is explored. It is found that rising temperature makes the terahertz absorption spectrum of the hydrogen bond network red-shift, indicating that the center frequency of the spectrum is strongly correlated with the strength of the hydrogen bond. Further studies show that there is a linear relationship between the hydrogen bond lifetime of water and the center frequency of vibration absorption peak of the hydrogen bond network. The underlying mechanism can be disclosed by imitating the hydrogen bonds in the hydrogen bond network as springs then using the spring oscillator model. These findings are conducive to understanding in depth the complex hydrogen bond network dynamics in water and promoting the study of terahertz biological effects.

     

    目录

    /

    返回文章
    返回