搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维晶格中全同任意子的量子动力学与关联

王利 贾丽芳 张云波

引用本文:
Citation:

一维晶格中全同任意子的量子动力学与关联

王利, 贾丽芳, 张云波

Quantum dynamics and correlations of indistinguishable anyons in one-dimensional lattices

Wang Li, Jia Li-Fang, Zhang Yun-Bo
PDF
HTML
导出引用
  • 任意子介于玻色子与费米子之间, 遵从奇特的分数统计, 隐含着许多有趣的物理特性. 本文研究了一维晶格中相互作用全同任意子的少体量子动力学及其量子关联性质. 基于严格的数值方法, 分析了任意子在晶格中局域粒子密度分布的动力学演化过程. 结果表明, 分数统计可以明显影响任意子动力学演化过程中实空间的局域粒子密度分布, 产生新的动力学结构. 特别地, 当存在相互作用时, 分数统计粒子的局域粒子密度分布会呈现有趣的依赖于相互作用性质的不对称性. 最后计算了任意子的密度密度关联, 分析了粒子统计性质和相互作用对体系量子关联的调制, 同时进一步证 实了任意子分数统计在实空间中的动力学效应.
    Anyons, namely particles obeying fractional quantum statistics that interpolate between bosons and fermions, possess a lot of new and exotic physical properties related to the particle exchange statistics. In this work, we explore the few-body quantum dynamics and quantum correlations of indistinguishable anyons with on-site interactions in one-dimensional lattices within the scheme of three-body continuous-time quantum walks. By employing a time-evolving block decimation (TEBD) algorithm, we numerically calculate the dynamical evolution process of the local density distribution of anyons among the whole lattice. Numerical simulations shown in the main text mainly focus on a three-body initial state as $ \left|\psi(t=0)\right>=\hat{a}_{-1}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{1}^{\dagger}\left|0\right>$, in which three particles are located on neighbouring sites at lattice centre. This choice of initial state features that the three particles influence one another most strongly, while we have also implemented numerical simulations on other choices of three-body initial states as are discussed in appendix. It is shown that the local density distribution of anyons is dramatically altered by fractional particle statistics with new dynamical structure showing up during the time evolution. For free anyons, an inner cone emerges as the statistical parameter increases, while the outer cone remains robust all along. When the on-site interaction joins in, the structure of the inner cone is further modified with new features. Specifically, for interaction of finite strength, an exotic dynamical asymmetry in real space, is clearly demonstrated during the time evolution of the local density distribution for particles within the fractional statistics regime. However, for boson limit and pseudofermion limit, the time evolution of the local density distribution keeps symmetric as the three-body initial state. And remarkably, the dynamical asymmetry is interaction-dependent manifested as the local density distribution of anyons favors opposite side of the lattice for repulsive and attractive interaction, respectively. Moreover, when the on-site interaction is further increased to hard-core limit, the dynamical asymmetry will then be largely suppressed. We also calculate the density-density correlations for anyons before they reach the lattice boundary to reveal the interesting effect of fractional statistics on quantum correlations. It is shown that the inner cone corresponds to co-walking of anyons, while the outer cone is related to individual walking and is immune to the variation of statistical parameter. Furthermore, the exotic real-space asymmetry originated from the interplay of fractional statistics and finite interaction is also shown up in the density-density correlations.
      通信作者: 王利, liwangiphy@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11404199, 12147215, 12074340)和山西省自然科学基金(批准号: 2015021012, 1331KSC)资助的课题.
      Corresponding author: Wang Li, liwangiphy@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404199, 12147215, 12074340) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2015021012, 1331KSC)
    [1]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [2]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [3]

    Kempe J 2003 Contemp. Phys. 44 307Google Scholar

    [4]

    Manouchehri K, Wang J B 2013 Physical Implementation of Quantum Walks (Berlin: Springer)

    [5]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174Google Scholar

    [6]

    Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [7]

    Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A, White A G 2010 Phys. Rev. Lett. 104 153602Google Scholar

    [8]

    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders B C 2015 Phys. Rev. Lett. 114 140502Google Scholar

    [9]

    Ramasesh V V, Flurin E, Rudner M, Siddiqi I, Yao N Y 2017 Phys. Rev. Lett. 118 130501Google Scholar

    [10]

    Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar

    [11]

    Ye Y S, Ge Z Y, Wu Y L, et al. 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [12]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [13]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316Google Scholar

    [14]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504Google Scholar

    [15]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507Google Scholar

    [16]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791Google Scholar

    [17]

    Zatelli F, Benedetti C, Paris M G A 2020 Entropy 22 1321Google Scholar

    [18]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015Google Scholar

    [19]

    Kitagawa T, Broome M A, Fedrizzi A, et al. 2012 Nat. Commun. 3 882Google Scholar

    [20]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [21]

    Wang K K, Li T Y, Xiao L, Han Y W, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602Google Scholar

    [22]

    Liu W J, Ke Y G, Zhang L, Lee C H 2019 Phys. Rev. A 99 063614Google Scholar

    [23]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005Google Scholar

    [24]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302Google Scholar

    [25]

    Beggi A, Buscemi F, Bordone P 2016 Quantum Inf. Process. 15 3711Google Scholar

    [26]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585Google Scholar

    [27]

    Wang L M, Wang L, Zhang Y B 2014 Phys. Rev. A 90 063618Google Scholar

    [28]

    Qin X Z, Ke Y G, Guan X W, Li Z B, Andrei N, Lee C H 2014 Phys. Rev. A 90 062301Google Scholar

    [29]

    Wang L, Hao Y J, Chen S 2010 Phys. Rev. A 81 063637Google Scholar

    [30]

    Ganahl M, Rabel E, Essler F H L, Evertz H G 2012 Phys. Rev. Lett. 108 077206Google Scholar

    [31]

    Sarkar S, Sowiński T 2020 Phys. Rev. A 102 043326Google Scholar

    [32]

    Wang L, Hao Y J, Chen S 2008 Eur. Phys. J. D 48 229Google Scholar

    [33]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [34]

    Wang L, Liu N, Chen S, Zhang Y B 2015 Phys. Rev. A 92 053606Google Scholar

    [35]

    Wang L, Liu N, Chen S, Zhang Y B 2017 Phys. Rev. A 95 013619Google Scholar

    [36]

    Cai X M, Yang H T, Shi H L, Lee C H, Andrei N, Guan X W 2021 Phys. Rev. Lett. 127 100406Google Scholar

    [37]

    Wilczek F 1982 Phys. Rev. Lett. 49 957Google Scholar

    [38]

    Halperin B I 1984 Phys. Rev. Lett. 52 1583Google Scholar

    [39]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937Google Scholar

    [40]

    Stern A 2008 Ann. Phys. 323 204Google Scholar

    [41]

    Bartolomei H, Kumar M, Bisognin R, et al. 2020 Science 368 173Google Scholar

    [42]

    Nakamura J, Liang S, Gardner G C, Manfra M J 2020 Nat. Phys. 16 931Google Scholar

    [43]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [44]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402Google Scholar

    [45]

    Kundu A 1999 Phys. Rev. Lett. 83 1275Google Scholar

    [46]

    Girardeau M D 2006 Phys. Rev. Lett. 97 100402Google Scholar

    [47]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat. Commun. 2 361Google Scholar

    [48]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115 053002Google Scholar

    [49]

    Vidal G 2003 Phys. Rev. Lett. 91 147902Google Scholar

    [50]

    Hao Y J, Zhang Y B, Chen S 2008 Phys. Rev. A 78 023631Google Scholar

  • 图 1  三任意子在一维晶格中局域粒子密度分布的时间演化过程. 晶格尺寸为$ L=101 $. 从左至右各列对应的统计参数χ的取值为0, 0.25, 0.5, 0.75, 1. 从上至下各行对应的相互作用强度U的取值为0, –1, –4, –80

    Fig. 1.  Dynamical evolution of the local density distribution of three identical anyons among one-dimensional lattices of $ L=101 $. From left to right, the statistical parameter χ is set to be 0, 0.25, 0.5, 0.75, 1. From top to bottom, the on-site interaction strength U takes value 0, –1, –4, –80, respectively

    图 2  不同量子统计及不同在位相互作用下, 任意子于时刻$t=t_{\rm{c}}=22$在一维晶格中的局域密度分布. 从左到右, 统计参数χ取值为0, 0.25, 0.5, 0.75, 1. 从上至下各行对应的相互作用强度U的取值为0, –1, 1

    Fig. 2.  Local density profiles of anyons among the whole lattice at time $t=t_{\rm{c}}=22$. From left to right, the statistical parameter χ is set to be 0, 0.25, 0.5, 0.75, 1. From top to bottom, the on-site interaction strength U takes values 0, –1, 1, respectively

    图 3  三任意子量子行走过程中的密度密度关联$\varGamma_{lk}(t)/\varGamma_{lk}^{{\rm{max}}}(t)$, 图中对应时刻为$t=t_{\rm{c}}=22$. 从左至右各列对应的统计参数χ的取值为0, 0.25, 0.5, 0.75, 1. 从上至下各行对应的相互作用强度U的取值为0, –1, –4, –80

    Fig. 3.  The density-density correlations $\varGamma_{lk}(t)/\varGamma_{lk}^{{\rm{max}}}(t)$ of the three identical anyons at time $t=t_{\rm{c}}=22$. From left to right, the statistical parameter χ is set to be 0, 0.25, 0.5, 0.75, 1. From top to bottom, the on-site interaction strength U takes value 0, –1, –4, –80, respectively

    图 A1  三任意子态$ \left|\psi(t=0)\right > =\hat{a}_{-2}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{2}^{\dagger}\left|0\right > $在一维晶格中动力学演化过程. 晶格尺寸为$ L=101 $. 从左至右各列对应的统计参数χ的取值为0, 0.25, 0.5, 0.75, 1. 从上至下各行对应的相互作用强度U的取值为0, –1, –4, –80

    Fig. A1.  (Color online) Dynamical evolution of the three-anyon state $ \left|\psi(t=0)\right > =\hat{a}_{-2}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{2}^{\dagger}\left|0\right > $ among one-dimensional lattices of $ L=101 $. From left to right, the statistical parameter χ is set to be 0, 0.25, 0.5, 0.75, 1. From top to bottom, the on-site interaction strength U takes value 0, –1, –4, –80, respectively

    图 A2  不同量子统计及不同在位相互作用下, 任意子于时刻$t=t_{\rm{c}}=9$在一维晶格中的局域密度分布. 任意子的量子初态为$ \left|\psi(t=0)\right > =\hat{a}_{-2}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{2}^{\dagger}\left|0\right > $. 从左到右统计参数χ取值为0, 0.25, 0.5, 0.75, 1. 从上至下各行对应的相互作用强度U的取值为0, –1, 1

    Fig. A2.  Local density profiles of anyons among the whole lattice at time $t=t_{\rm{c}}=9$. The initial state is chosen as $ \left|\psi(t=0)\right > =\hat{a}_{-2}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{2}^{\dagger}\left|0\right > $. From left to right, the statistical parameter χ is set to be 0, 0.25, 0.5, 0.75, 1. From top to bottom, the on-site interaction strength U takes values 0, –1, 1, respectively

  • [1]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [2]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [3]

    Kempe J 2003 Contemp. Phys. 44 307Google Scholar

    [4]

    Manouchehri K, Wang J B 2013 Physical Implementation of Quantum Walks (Berlin: Springer)

    [5]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174Google Scholar

    [6]

    Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [7]

    Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A, White A G 2010 Phys. Rev. Lett. 104 153602Google Scholar

    [8]

    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders B C 2015 Phys. Rev. Lett. 114 140502Google Scholar

    [9]

    Ramasesh V V, Flurin E, Rudner M, Siddiqi I, Yao N Y 2017 Phys. Rev. Lett. 118 130501Google Scholar

    [10]

    Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar

    [11]

    Ye Y S, Ge Z Y, Wu Y L, et al. 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [12]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [13]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316Google Scholar

    [14]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504Google Scholar

    [15]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507Google Scholar

    [16]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791Google Scholar

    [17]

    Zatelli F, Benedetti C, Paris M G A 2020 Entropy 22 1321Google Scholar

    [18]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015Google Scholar

    [19]

    Kitagawa T, Broome M A, Fedrizzi A, et al. 2012 Nat. Commun. 3 882Google Scholar

    [20]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [21]

    Wang K K, Li T Y, Xiao L, Han Y W, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602Google Scholar

    [22]

    Liu W J, Ke Y G, Zhang L, Lee C H 2019 Phys. Rev. A 99 063614Google Scholar

    [23]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005Google Scholar

    [24]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302Google Scholar

    [25]

    Beggi A, Buscemi F, Bordone P 2016 Quantum Inf. Process. 15 3711Google Scholar

    [26]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585Google Scholar

    [27]

    Wang L M, Wang L, Zhang Y B 2014 Phys. Rev. A 90 063618Google Scholar

    [28]

    Qin X Z, Ke Y G, Guan X W, Li Z B, Andrei N, Lee C H 2014 Phys. Rev. A 90 062301Google Scholar

    [29]

    Wang L, Hao Y J, Chen S 2010 Phys. Rev. A 81 063637Google Scholar

    [30]

    Ganahl M, Rabel E, Essler F H L, Evertz H G 2012 Phys. Rev. Lett. 108 077206Google Scholar

    [31]

    Sarkar S, Sowiński T 2020 Phys. Rev. A 102 043326Google Scholar

    [32]

    Wang L, Hao Y J, Chen S 2008 Eur. Phys. J. D 48 229Google Scholar

    [33]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [34]

    Wang L, Liu N, Chen S, Zhang Y B 2015 Phys. Rev. A 92 053606Google Scholar

    [35]

    Wang L, Liu N, Chen S, Zhang Y B 2017 Phys. Rev. A 95 013619Google Scholar

    [36]

    Cai X M, Yang H T, Shi H L, Lee C H, Andrei N, Guan X W 2021 Phys. Rev. Lett. 127 100406Google Scholar

    [37]

    Wilczek F 1982 Phys. Rev. Lett. 49 957Google Scholar

    [38]

    Halperin B I 1984 Phys. Rev. Lett. 52 1583Google Scholar

    [39]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937Google Scholar

    [40]

    Stern A 2008 Ann. Phys. 323 204Google Scholar

    [41]

    Bartolomei H, Kumar M, Bisognin R, et al. 2020 Science 368 173Google Scholar

    [42]

    Nakamura J, Liang S, Gardner G C, Manfra M J 2020 Nat. Phys. 16 931Google Scholar

    [43]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [44]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402Google Scholar

    [45]

    Kundu A 1999 Phys. Rev. Lett. 83 1275Google Scholar

    [46]

    Girardeau M D 2006 Phys. Rev. Lett. 97 100402Google Scholar

    [47]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat. Commun. 2 361Google Scholar

    [48]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115 053002Google Scholar

    [49]

    Vidal G 2003 Phys. Rev. Lett. 91 147902Google Scholar

    [50]

    Hao Y J, Zhang Y B, Chen S 2008 Phys. Rev. A 78 023631Google Scholar

  • [1] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆. EAST托卡马克钨杂质上下不对称性分布的实验研究. 物理学报, 2024, 73(3): 035201. doi: 10.7498/aps.73.20231448
    [2] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运. 物理学报, 2023, 72(20): 200501. doi: 10.7498/aps.72.20230825
    [3] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学. 物理学报, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [4] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法. 物理学报, 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [5] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性. 物理学报, 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [6] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究. 物理学报, 2022, 71(22): 220701. doi: 10.7498/aps.71.20220775
    [7] 王利, 贾丽芳, 张云波. 一维晶格中全同任意子的量子动力学与关联. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220188
    [8] 滕利华, 牟丽君. 掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}. 物理学报, 2017, 66(4): 046802. doi: 10.7498/aps.66.046802
    [9] 王文娟, 童培庆. 广义Fibonacci时间准周期量子行走波包扩散的动力学特性. 物理学报, 2016, 65(16): 160501. doi: 10.7498/aps.65.160501
    [10] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响. 物理学报, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [11] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [12] 沈红霞, 吴国祯, 王培杰. (R)-1,3丁二醇的手性不对称性:微分键极化率的研究. 物理学报, 2013, 62(15): 153301. doi: 10.7498/aps.62.153301
    [13] 黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚. 间接驱动的内爆不对称性随腔长和时间变化的研究. 物理学报, 2013, 62(22): 225204. doi: 10.7498/aps.62.225204
    [14] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ). 物理学报, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [15] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析. 物理学报, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [16] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵. 物理学报, 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [17] 王永龙, 李子平, 许长谭. 组合Bose场的分数自旋和分数统计性. 物理学报, 2006, 55(5): 2149-2151. doi: 10.7498/aps.55.2149
    [18] 金奎娟, 潘少华, 杨国桢. 量子阱中电子-LO声子相互作用引起共振喇曼散射的不对称线形. 物理学报, 1995, 44(2): 299-304. doi: 10.7498/aps.44.299
    [19] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题. 物理学报, 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [20] 胡宁. Λ和∑粒子衰变的上下不对称性. 物理学报, 1961, 17(7): 315-320. doi: 10.7498/aps.17.315
计量
  • 文章访问数:  3652
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-02-25
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回