搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间反演的局域空间多目标均匀恒定长时无线输能

张知原 李冰 刘仕奇 张洪林 胡斌杰 赵德双 王楚楠

引用本文:
Citation:

基于时间反演的局域空间多目标均匀恒定长时无线输能

张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠

Uniform and constant long-time wireless power transmission of multi-targets in local space based on time reversal

Zhang Zhi-Yuan, Li Bing, Liu Shi-Qi, Zhang Hong-Lin, Hu Bin-Jie, Zhao De-Shuang, Wang Chu-Nan
PDF
HTML
导出引用
  • 在局域有限空间中, 如何保证电磁能量的多目标精准均匀恒定无线传输是亟待解决的科学难题. 本文针对此难题, 以具有时空聚焦特性的时间反演技术为基础, 提出一种自动区域选择信道匹配的恒定均匀无线输能方法. 该方法不仅能够依据多径信号的贡献率, 自适应性地补偿不同目标处的信道差异, 还可以利用距离系数动态划分时间反演镜阵元的工作范围, 降低不同目标间的相互影响. 在提高能量聚焦精度的同时, 解决微波无线输能(microwave power transmission, MPT)中多目标能量非均匀传输的问题, 从而实现长时间恒定的多目标均匀MPT.
    The precise, uniform and constant wireless transmission of electromagnetic power to multiple targets in a local finite space is a scientific problem to be solved urgently. Aiming at this problem, in this paper we propose an automatic zone selection channel matching method based on time reversal technique which has the spatiotemporal focusing characteristics. The proposed method can not only adaptively compensate for the channel differences at different targets based on the contribution rate of the multipath signals, but also dynamically divide the working range of the time reversal mirror elements to eliminate the mutual influences between different targets through the use of the distance coefficient. While improving the accuracy of energy focusing, the proposed method also solves the problem that non-uniform microwave power transmission (MPT) of multiple targets, and therefore achieving the constant, uniform and long-time MPT of multi-targets.
      通信作者: 李冰, bllijess@outlook.com
    • 基金项目: 毫米波国家重点实验室开放课题(批准号: K202235)、国家自然科学基金(批准号: 61871193)、广东省自然科学基金重点项目(批准号: 2018B030311049)和四川省应用基础研究项目(批准号: 19YYJC0025)资助的课题
      Corresponding author: Li Bing, bllijess@outlook.com
    • Funds: Project supported by the Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K202235), the National Natural Science Foundation of China (Grant No. 61871193), the Key Program of Natural Science Foundation of Guangdong Province, China (Grant No. 2018B030311049), and the Applied Basic Research Program of Sichuan Province, China (Grant No. 19YYJC0025)
    [1]

    Zhu X R, Jin K, Hui Q 2021 IEEE J. Emerging Sel. Top. Power Electron. 9 1147Google Scholar

    [2]

    Zeng Y, Clerckx B, Zhang R 2017 IEEE Trans. Commun. 65 2264Google Scholar

    [3]

    倪旺, 丁飞, 宗军, 纪伟伟, 刘兴江 2019 电源技术 43 357Google Scholar

    Ni W, Ding F, Zong J, Ji W W, Liu X J 2019 Chin. J. Power Sources 43 357Google Scholar

    [4]

    殷正刚, 史黎明, 范满义 2021 电工技术学报 36 1Google Scholar

    Yin Z G, Shi L M, Fan M Y 2021 Trans. China Electrotech. Soc. 36 1Google Scholar

    [5]

    Pries J, Galigekere V P N, Onar O C, Su G J 2020 IEEE Trans. Power Electron. 35 4500Google Scholar

    [6]

    王龙飞 2019 电力电子技术 53 23

    Wang L F 2019 Power Electron. 53 23

    [7]

    Lee J, Lee K 2020 IEEE Trans. Power Electron. 35 6697Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 物理学报 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    Joseph S D, Huang Y, Hsu S S H, Alieldin A, Song C Y 2021 IEEE Trans. Microwave Theory Tech. 69 482Google Scholar

    [10]

    黎深根, 陈仲林, 宋磊, 张琳, 李天明, 冯进军, 周碎明 2019 微波学报 35 56Google Scholar

    Li S G, Chen Z L, Song L, Zhang L, Li T M, Feng J J, Zhou S M 2019 J. Microw. 35 56Google Scholar

    [11]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555Google Scholar

    [12]

    Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [13]

    Kaina N, Dupré M, Lerosey G, Fink M 2014 Sci. Rep. 4 6693Google Scholar

    [14]

    Zhao D S, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [15]

    Zhao D S, Guo F 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, USA, July 9−14, 2017 p231

    [16]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [17]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [18]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [19]

    Lee S, Zhang R 2017 IEEE Trans. Signal Process. 65 1685Google Scholar

    [20]

    Chettri L, Bera R 2020 IEEE Internet Things J. 7 16Google Scholar

    [21]

    Ayir N, Riihonen T, Allen M, Fierro M F T 2021 IEEE Trans. Microwave Theory Tech. 69 1917Google Scholar

    [22]

    Lee S, Zeng Y, Zhang R 2018 IEEE Wirel. Commun. Lett. 7 54Google Scholar

    [23]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 IEEE International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications Athens, Greece, March 1−3, 2017 p162

    [24]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [25]

    郭飞 2018 硕士学位论文 (成都: 电子科技大学)

    Guo F 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [26]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [27]

    Bao J L, Zhao D S, Cao W P, Li B, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology Guangzhou, China, May 19−22, 2019, p1

    [28]

    Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Huang Y K 2019 IEEE Access 7 114897Google Scholar

    [29]

    Ku M L, Han Y, Lai H Q, Chen Y, Liu K J R 2016 IEEE Trans. Signal Process. 64 5819Google Scholar

    [30]

    Kim J H, Lim Y J, Nam S W 2019 IEEE Trans. Antennas Propag. 67 5750Google Scholar

    [31]

    李冰 2016 博士学位论文 (广州: 华南理工大学)

    Li B 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [32]

    院琳, 杨雪松, 王秉中 2019 物理学报 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [33]

    Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [34]

    丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 物理学报 60 104101Google Scholar

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101Google Scholar

    [35]

    Fusco V F 2006 IEEE Trans. Antennas Propag. 54 1352Google Scholar

  • 图 1  自动区域选择信道匹配方法的逻辑流程图

    Fig. 1.  Logic chart of automatic zone selection channel matching method.

    图 2  MPT模型的相关参数 (a) 两个及 (b) 三个待输能目标的布置示意图; (c) 天线单元结构; (d) 激励信号

    Fig. 2.  Relevant parameters of the MPT model: Schematic diagrams of (a) two and (b) three MPT targets; (c) antenna element structure; (d) excitation signal.

    图 3  基于TR技术的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Fig. 3.  Long-time MPT field strength distribution based on TR technique: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 5  基于自动区域选择信道匹配方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Fig. 5.  Long-time MPT field strength distribution based on automatic zone selection channel matching method: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 4  基于信道补偿方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Fig. 4.  Long-time MPT field strength distribution based on channel compensation method: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 6  基于TR技术的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Fig. 6.  Long-time MPT field strength distribution based on TR technique: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    图 7  基于信道补偿方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Fig. 7.  Long-time MPT field strength distribution based on channel compensation method: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    图 8  基于自动区域选择信道匹配方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Fig. 8.  Long-time MPT field strength distribution based on automatic zone selection channel matching method: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    表 1  不同方法在输能时长内各参数均值

    Table 1.  Average value of each parameter under MPT of different methods.

    直接发射TR信道补偿自动区域选择信道匹配
    最大场强差值/(V·m–1)无聚焦4.2780.4700.139
    最大场强偏差率无聚焦7.46%1.02%0.34%
    功率差值/mW无聚焦2.70.2250.1
    功率偏差率无聚焦15.92%2.08%1.21%
    平均输能效率0.120‰0.509‰0.310‰0.326‰
    面积差值/mm2无聚焦22748.333102.667
    最大主副瓣比/dB无聚焦2.6663.4994.703
    下载: 导出CSV

    表 2  不同方法在输能时长内各参数均值

    Table 2.  Average value of each parameter under MPT of different methods.

    直接发射TR信道补偿自动区域选择信道匹配
    平均最大场强差值/(V·m–1)无聚焦3.2684.6550.510
    平均最大场强偏差率无聚焦6.34%10.18%1.14%
    平均功率差值/mW无聚焦1.5732.2510.330
    平均功率偏差率无聚焦11.19%18.73%3.18%
    平均输能效率0.139‰0.412‰0.365‰0.664‰
    平均面积差值/mm2无聚焦74.66797.55643.556
    最大主副瓣比/dB无聚焦4.0163.6793.406
    下载: 导出CSV
  • [1]

    Zhu X R, Jin K, Hui Q 2021 IEEE J. Emerging Sel. Top. Power Electron. 9 1147Google Scholar

    [2]

    Zeng Y, Clerckx B, Zhang R 2017 IEEE Trans. Commun. 65 2264Google Scholar

    [3]

    倪旺, 丁飞, 宗军, 纪伟伟, 刘兴江 2019 电源技术 43 357Google Scholar

    Ni W, Ding F, Zong J, Ji W W, Liu X J 2019 Chin. J. Power Sources 43 357Google Scholar

    [4]

    殷正刚, 史黎明, 范满义 2021 电工技术学报 36 1Google Scholar

    Yin Z G, Shi L M, Fan M Y 2021 Trans. China Electrotech. Soc. 36 1Google Scholar

    [5]

    Pries J, Galigekere V P N, Onar O C, Su G J 2020 IEEE Trans. Power Electron. 35 4500Google Scholar

    [6]

    王龙飞 2019 电力电子技术 53 23

    Wang L F 2019 Power Electron. 53 23

    [7]

    Lee J, Lee K 2020 IEEE Trans. Power Electron. 35 6697Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 物理学报 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    Joseph S D, Huang Y, Hsu S S H, Alieldin A, Song C Y 2021 IEEE Trans. Microwave Theory Tech. 69 482Google Scholar

    [10]

    黎深根, 陈仲林, 宋磊, 张琳, 李天明, 冯进军, 周碎明 2019 微波学报 35 56Google Scholar

    Li S G, Chen Z L, Song L, Zhang L, Li T M, Feng J J, Zhou S M 2019 J. Microw. 35 56Google Scholar

    [11]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555Google Scholar

    [12]

    Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [13]

    Kaina N, Dupré M, Lerosey G, Fink M 2014 Sci. Rep. 4 6693Google Scholar

    [14]

    Zhao D S, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [15]

    Zhao D S, Guo F 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, USA, July 9−14, 2017 p231

    [16]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [17]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [18]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [19]

    Lee S, Zhang R 2017 IEEE Trans. Signal Process. 65 1685Google Scholar

    [20]

    Chettri L, Bera R 2020 IEEE Internet Things J. 7 16Google Scholar

    [21]

    Ayir N, Riihonen T, Allen M, Fierro M F T 2021 IEEE Trans. Microwave Theory Tech. 69 1917Google Scholar

    [22]

    Lee S, Zeng Y, Zhang R 2018 IEEE Wirel. Commun. Lett. 7 54Google Scholar

    [23]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 IEEE International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications Athens, Greece, March 1−3, 2017 p162

    [24]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [25]

    郭飞 2018 硕士学位论文 (成都: 电子科技大学)

    Guo F 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [26]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [27]

    Bao J L, Zhao D S, Cao W P, Li B, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology Guangzhou, China, May 19−22, 2019, p1

    [28]

    Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Huang Y K 2019 IEEE Access 7 114897Google Scholar

    [29]

    Ku M L, Han Y, Lai H Q, Chen Y, Liu K J R 2016 IEEE Trans. Signal Process. 64 5819Google Scholar

    [30]

    Kim J H, Lim Y J, Nam S W 2019 IEEE Trans. Antennas Propag. 67 5750Google Scholar

    [31]

    李冰 2016 博士学位论文 (广州: 华南理工大学)

    Li B 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [32]

    院琳, 杨雪松, 王秉中 2019 物理学报 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [33]

    Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [34]

    丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 物理学报 60 104101Google Scholar

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101Google Scholar

    [35]

    Fusco V F 2006 IEEE Trans. Antennas Propag. 54 1352Google Scholar

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [3] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [4] 张双, 贺三军, 廖峰, 罗万, 周芷千, 高波, 刘丽艳, 赵修良. 基于Boosted-Gold算法的γ能谱反演分析. 物理学报, 2022, 71(10): 102901. doi: 10.7498/aps.71.20212429
    [5] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性. 物理学报, 2022, 71(2): 024101. doi: 10.7498/aps.71.20210701
    [6] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210701
    [7] 宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪. 基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 物理学报, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [8] 张知原, 李冰. 基于时间反演的局域空间多目标均匀恒定长时无线输能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211231
    [9] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [10] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [11] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [12] 臧锐, 王秉中, 丁帅, 龚志双. 基于反演场扩散消除的时间反演多目标成像技术. 物理学报, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [13] 张金鹏, 张玉石, 吴振森, 张玉生, 胡荣旭. 基于雷达海杂波的区域性非均匀蒸发波导反演方法. 物理学报, 2015, 64(12): 124101. doi: 10.7498/aps.64.124101
    [14] 秦华, 类成新, 刘汉法, 葛硕硕. 高次柱面反射型太阳能聚光镜的光学设计. 物理学报, 2013, 62(10): 104215. doi: 10.7498/aps.62.104215
    [15] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [16] 高嵩, 李巍, 尤云祥, 胡天群. 气液混输管线与立管系统严重段塞流数值研究. 物理学报, 2012, 61(10): 104701. doi: 10.7498/aps.61.104701
    [17] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [18] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [19] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 时间反演镜对时间反演电磁波聚焦特性影响因素的研究. 物理学报, 2011, 60(10): 104101. doi: 10.7498/aps.60.104101
    [20] 卫崇德, 罗小兰, 孟小凡. 非平衡超导铅膜中的非均匀能隙态. 物理学报, 1982, 31(5): 699-703. doi: 10.7498/aps.31.699
计量
  • 文章访问数:  4258
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-10-09
  • 上网日期:  2021-12-27
  • 刊出日期:  2022-01-05

/

返回文章
返回