搜索

x
中国物理学会期刊

双电子传输层结构硫硒化锑太阳电池的界面特性优化

CSTR: 32037.14.aps.71.20211525

Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure

CSTR: 32037.14.aps.71.20211525
PDF
HTML
导出引用
  • 硫硒化锑薄膜太阳电池因其制备方法简单、原材料丰富无毒、光电性质稳定等优点, 成为了光伏领域的研究热点. 经过近几年的发展, 硫硒化锑太阳电池的光电转换效率已经突破10%, 极具发展潜力. 本文针对硫硒化锑太阳电池中n/i界面引起的载流子复合进行了深入研究. 发现硫硒化锑太阳电池的界面特性会受到界面电子迁移能力和能带结构两方面的影响. 界面电子迁移率的提高能使电子更有效地传输至电子传输层, 实现器件短路电流密度和填充因子的有效提升. 在此基础上, 引入ZnO/Zn1–xMgxO双电子传输层结构能够进一步优化硫硒化锑太阳电池性能. 其中, Zn1–xMgxO能级位置的改变可以同时调节界面和吸光层的能级分布, 在Zn1–xMgxO导带能级为–4.2 eV, 对应Mg含量为20%时, 抑制载流子复合的效果最为明显, 硫硒化锑太阳电池也获得了最佳的器件性能. 在去除缺陷态的理想情况下, 双电子传输层结构硫硒化锑太阳电池在600 nm厚时获得了20.77%的理论光电转换效率, 该研究结果为硫硒化锑太阳电池的进一步优化和发展提供了理论与技术支持.

     

    Antimony sulfide selenide thin film solar cells have drawn great interest in the field of photovoltaic due to their advantages of simple preparation method, abundant raw materials, non-toxic and stable photoelectric properties. After the development in recent years, the photoelectric conversion efficiency of antimony sulfide selenide solar cells has exceeded 10%, which has great development potential. In this work, the carrier recombination near n/i interface in antimony sulfide selenide solar cells is studied. It is found that the characteristics of the n/i interface are affected by the interfacial electron mobility and energy band structure. The improvement of the interface electron mobility can make the electrons more effectively transferred to the electron transport layer, and realize the effective improvement of the short circuit current density and fill factor of the device. Moreover, the introduction of ZnO/Zn1–xMgxO double electron transport layer structure can further optimize the performance of antimony sulfide selenide solar cells. The change of Zn1–xMgxO energy level position can adjust the energy level distribution of the interface and light absorption layer simultaneously. When the conduction band energy level of Zn1–xMgxO is –4.2 eV and the corresponding Mg content is 20%, the effect of restraining the carrier recombination is the most obvious, and the antimony sulfide selenide solar cell also obtains the best device performance. Finally, under the ideal condition of removing the defect state, the antimony sulfide selenide solar cells with 600 nm in thickness can achieve 20.77% theoretical photoelectric conversion efficiency. The research results provide theoretical and technical support for further optimizing and developing the antimony sulfide selenide solar cells.

     

    目录

    /

    返回文章
    返回