搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秦始皇陵地宫宇宙射线缪子吸收成像模拟研究

苏宁 刘圆圆 王力 程建平

引用本文:
Citation:

秦始皇陵地宫宇宙射线缪子吸收成像模拟研究

苏宁, 刘圆圆, 王力, 程建平

Muon radiography simulation for underground palace of Qinshihuang Mausoleum

Su Ning, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping
PDF
HTML
导出引用
  • 宇宙射线缪子吸收成像技术是一种无损成像技术, 适用于对大尺度的成像目标进行无损探测. 考古学中现有的无损探测方法均存在一定的局限性, 若将缪子吸收成像技术应用于考古领域, 可以作为对传统无损探测方法的重要补充. 本文使用蒙特卡罗GEANT4程序, 对秦始皇陵地宫缪子吸收成像进行研究, 基于已有的秦始皇陵考古数据构建秦始皇陵地宫模型, 根据Reyna提出的海平面缪子能谱公式抽样产生缪子源的信息, 模拟了宇宙射线缪子在秦始皇陵地宫中的输运过程, 并利用图像重建算法实现墓室大小和位置的重构. 模拟结果表明, 利用单视角获得的缪子通量投影数据可以给出地宫中墓室边界的二维角坐标, 利用两个视角的投影数据可以重建墓室大小和三维位置, 重建得到的墓室边长和墓室中心位置相对于理论值的差异在7%左右.
    Muon radiography is a nondestructive imaging technology based on the naturally existing cosmic ray muons. Because cosmic ray muons have the strong ability to penetrate, muon radiography in which the absorption of muons through matter is utilized, is especially suitable for the imaging of large-scale objects. While the traditional geophysical technologies used in archeology have some limitations, muon radiography is expected to become a powerful supplement in the nondestructive detection of large-scale cultural relics. Based on Monte Carlo simulation method Geant4, the muon radiography of the underground palace of Qinshihuang Mausoleum is studied in this work. A model of the underground palace of Qinshihuang Mausoleum is set up with GEANT4 program according to the data acquired by the previous archaeological study of Qinshihuang Mausoleum’s inner structure, as well as a reference model without these inner structure. By investigating the differences between the muon fluxes obtained from the two models, the muon radiography image of the inner structure of the model can be obtained. During the simulation, the cosmic ray muon source is generated by sampling according to an empirical formula summarized by Reyna, which can accurately describe the energy spectrum and angular distribution of cosmic ray muons at sea level. In addition, two viewpoints are selected in order to determine the three-dimensional position of the chamber. The simulation data are processed by using an image reconstruction algorithm which can be described as the following three steps. Firstly, the counts of muons in different directions are converted into muon flux. Secondly, the muon flux of the reference model is deducted from that of the Qinshihuang Mausoleum model, and the angular coordinates of the chamber walls are determined. Finally, combined with the wall’s angular coordinates obtained from the two viewpoints and the relative position between the two viewpoints, the chamber size and its position are reconstructed according to the geometric relationship. The errors of the reconstructed chamber center position and the length of chamber walls are both approximately 7%. In this article, we conduct only a preliminary study of muon radiography applied to the nondestructive detection of Qinshihuang Mausoleum, but the results show that muon radiography can be a promising tool for the archeological study of Qinshihuang Mausoleum. In the follow-up study, more factors will be taken into consideration, including the details of Qinshihuang Mausoleum model, and the improvement of image reconstruction algorithm.
      通信作者: 刘圆圆, yyliu@bnu.edu.cn ; 王力, wangl@bnu.edu.cn
    • 基金项目: 2021年生态环境部核与辐射安全技术审评项目(批准号: NSCCG2021-052)资助的课题
      Corresponding author: Liu Yuan-Yuan, yyliu@bnu.edu.cn ; Wang Li, wangl@bnu.edu.cn
    • Funds: Project supported by the Nuclear and Radiation Security Technology in Ministry of Ecology and Environment, China (Grant No. NSCCG2021-052)
    [1]

    Amenomori M, Bao Y W, Bi X J, et al. 2019 Phys. Rev. Lett. 123 51101Google Scholar

    [2]

    Cao Z, Aharonian F A, An Q, et al. 2021 Nature 594 33Google Scholar

    [3]

    Liu Y Y, Chen Z Q, Zhao Z R, Zhang L, Wang Z T 2009 Tsinghua Sci. Technol. 14 313Google Scholar

    [4]

    Tanaka H K M, Nakano T, Takahashi S, et al. 2007 Earth Planet. Sci. Lett. 263 104Google Scholar

    [5]

    George E P 1955 Commonw. Eng. 1955 455

    [6]

    Alvarez L W, Anderson J A, Bedwei F E, et al. 1970 Science 167 832Google Scholar

    [7]

    Nagamine, K, Iwasaki, M, Shimomura K, Ishida K 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 356 585Google Scholar

    [8]

    Caffau E, Coren F, Giannini G 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 385 480Google Scholar

    [9]

    Malmqvist L, Jonsson G, Kristiansson K, Jacobsson L 1979 Geophysics 44 1549Google Scholar

    [10]

    Carbone D, Gibert D, Marteau J, Diament M, Zuccarello L, Galichet E 2014 Geophys. J. Int. 196 633Google Scholar

    [11]

    Tanaka H K M 2016 Sci. Rep. 6 39741Google Scholar

    [12]

    Rosas-Carbajal M, Jourde K, Marteau J, Deroussi S, Komorowski J C, Gibert D 2017 Geophys. Res. Lett. 44 6743Google Scholar

    [13]

    Schouten D, Ledru P 2018 J. Geophys. Res. Solid Earth 123 8637Google Scholar

    [14]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [15]

    Saracino G, Amato L, Ambrosino F, et al. 2017 Sci. Rep. 7 1181Google Scholar

    [16]

    蒋宏耀, 张立敏 1997 地球物理学报 40 383

    Jiang H Y, Zhang L M 1997 Chin. J. Geophys. 40 383

    [17]

    宗鑫, 王心源, 刘传胜, 骆磊 2016 地球信息科学学报 18 273

    Zong X, Wang X Y, Liu C S, Luo L 2016 J. Geo-Information Science 18 273

    [18]

    林金鑫 2011 博士学位论文 (杭州: 浙江大学)

    Lin X J 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Beringer J, Arguin J F, Barnett R M, et al. 2012 Phys. Rev. D 86 010001Google Scholar

    [20]

    Tsuji S, Katayama T, Okei K, Wada T, Yamamoto I, Yamashita Y 1998 J. Phys. G:Nucl. Part. Phys. 24 1805Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [22]

    于国明, 王书民, 王帮兵, 等 2005 秦始皇陵地宫地球物理探测成果与技术 (北京: 地质出版社) 第17—58页

    Yu G M, Wang S M, Wang B B, et al. 2005 Geophysical Exploration for the Underground Palace of Emperor Qinshihuang Mausoleum (Beijing: Geological Publishing House) pp17–58 (in Chinese)

    [23]

    吴明清, 文启忠, 潘景瑜, 刁桂仪 1996 自然科学进展 01 82

    Wu M Q, Wen Q Z, Pan J Y, Diao G Y 1996 Prog. Nat. Sci. 01 82

    [24]

    Gaisser T K 1990 Cosmic Rays and Particle Physics (New York: Cambridge University Press) p71

    [25]

    Reyna D 2006 arXiv: 0604145v2 [hep-ph]

    [26]

    Smith J A, Duller N M 1959 J. Geophys. Res. 64 2297Google Scholar

    [27]

    Su N, Liu Y Y, Wang L, Wu B, Cheng J P 2021 Front. Energy Res. 9 640Google Scholar

  • 图 1  (a) 实验测量得到的不同方向上的海平面μ子通量[20]; (b)探测器探测到的μ子的方位角φ和天顶角θ, 其中xOy为水平面

    Fig. 1.  (a) Sea-level muon flux at different zenith angles measured in experiment[20]; (b) zenith angle θ and azimuth angle φ of the muon detected by a detector. The xOy plane represents for horizontal plane.

    图 2  测量点与ROI之间的几何关系示意图

    Fig. 2.  Geometric relationship between viewpoint and ROI.

    图 3  秦始皇陵模型示意图 (a) 模型1内部结构示意图; (a1) 模型1俯视图; (a2) 模型1正视图; (a3) 模型1剖面3示意图; (a4) 模型1剖面1示意图; (b) 模型2示意图(无内部结构);

    Fig. 3.  Model of Qinshihuang Mausoleum: (a) Inner structure of Model 1; (a1) top view of Model 1; (a2) front view of Model 1; (a3) profile 3 of Model 1; (a4) profile 1 of Model 1; (b) Model 2 (no inner structure).

    图 4  根据Reyna公式抽样产生的1000万个μ子的动量和天顶角分布 (a) μ子数量随μ子动量变化分布; (b) μ子数量随μ子速度方向的天顶角变化分布

    Fig. 4.  Momentum spectrum and zenith angle distribution of the 10 million muons sampled by Reyna formula: (a) Momentum spectrum of the sampled muons; (b) zenith angle distribution of the sampled muons.

    图 5  两个测量点得到的$ f(\theta, \varphi ) $的二维投影图 (a)测量点1的$ f(\theta, \varphi ) $投影图, 其中, $ {\rm{t}\rm{a}\rm{n}}{\theta }_{x}={\rm{t}\rm{a}\rm{n}}\theta {\rm{c}}{\rm{o}}{\rm{s}} \varphi $, ${\rm{t}\rm{a}\rm{n}}{\theta }_{y}= $$ {\rm{t}\rm{a}\rm{n}}\theta {\rm{s}}\rm{i}\rm{n} \varphi$; (b)测量点2的$ f(\theta, \varphi ) $投影图

    Fig. 5.  Two-dimensional projection of $ f\left(\theta, \varphi \right) $ obtained at viewpoint 1 and 2: (a) Distribution of $ f\left(\theta, \varphi \right) $ obtained at viewpoint 1, where the $ {\rm{t}\rm{a}\rm{n}}{\theta }_{x}={\rm{t}\rm{a}\rm{n}}\theta {\rm{c}}{\rm{o}}{\rm{s}} \varphi $, $ {\rm{t}\rm{a}\rm{n}}{\theta }_{y}={\rm{t}\rm{a}\rm{n}}\theta {\rm{s}}\rm{i}\rm{n} \varphi $; (b) distribution of $ f\left(\theta, \varphi \right) $obtained at viewpoint 2.

    图 6  墓室三维重建结果 (a) 剖面1处重建结果; (b)剖面2处重建结果

    Fig. 6.  Three-dimensional reconstruction results of the chamber: (a) Reconstruction result at Profile 1; (b) reconstruction result at Profile 2

    表 1  秦始皇陵地宫模型材质及密度定义表[22]

    Table 1.  Material and density definition table of the Qinshihuang Mausoleum model[22].

    区域名称材质密度$/(\rm{g}\cdot{\rm{c} }{\rm{m} }^{-3})$
    土地黄土1.6
    封土堆黄土1.85
    细夯土墙黄土1.95
    回填夯土黄土1.85
    宫墙碳酸钙2.7
    墓室空气$ 1.29\times {10}^{-3} $
    下载: 导出CSV
  • [1]

    Amenomori M, Bao Y W, Bi X J, et al. 2019 Phys. Rev. Lett. 123 51101Google Scholar

    [2]

    Cao Z, Aharonian F A, An Q, et al. 2021 Nature 594 33Google Scholar

    [3]

    Liu Y Y, Chen Z Q, Zhao Z R, Zhang L, Wang Z T 2009 Tsinghua Sci. Technol. 14 313Google Scholar

    [4]

    Tanaka H K M, Nakano T, Takahashi S, et al. 2007 Earth Planet. Sci. Lett. 263 104Google Scholar

    [5]

    George E P 1955 Commonw. Eng. 1955 455

    [6]

    Alvarez L W, Anderson J A, Bedwei F E, et al. 1970 Science 167 832Google Scholar

    [7]

    Nagamine, K, Iwasaki, M, Shimomura K, Ishida K 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 356 585Google Scholar

    [8]

    Caffau E, Coren F, Giannini G 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 385 480Google Scholar

    [9]

    Malmqvist L, Jonsson G, Kristiansson K, Jacobsson L 1979 Geophysics 44 1549Google Scholar

    [10]

    Carbone D, Gibert D, Marteau J, Diament M, Zuccarello L, Galichet E 2014 Geophys. J. Int. 196 633Google Scholar

    [11]

    Tanaka H K M 2016 Sci. Rep. 6 39741Google Scholar

    [12]

    Rosas-Carbajal M, Jourde K, Marteau J, Deroussi S, Komorowski J C, Gibert D 2017 Geophys. Res. Lett. 44 6743Google Scholar

    [13]

    Schouten D, Ledru P 2018 J. Geophys. Res. Solid Earth 123 8637Google Scholar

    [14]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [15]

    Saracino G, Amato L, Ambrosino F, et al. 2017 Sci. Rep. 7 1181Google Scholar

    [16]

    蒋宏耀, 张立敏 1997 地球物理学报 40 383

    Jiang H Y, Zhang L M 1997 Chin. J. Geophys. 40 383

    [17]

    宗鑫, 王心源, 刘传胜, 骆磊 2016 地球信息科学学报 18 273

    Zong X, Wang X Y, Liu C S, Luo L 2016 J. Geo-Information Science 18 273

    [18]

    林金鑫 2011 博士学位论文 (杭州: 浙江大学)

    Lin X J 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Beringer J, Arguin J F, Barnett R M, et al. 2012 Phys. Rev. D 86 010001Google Scholar

    [20]

    Tsuji S, Katayama T, Okei K, Wada T, Yamamoto I, Yamashita Y 1998 J. Phys. G:Nucl. Part. Phys. 24 1805Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [22]

    于国明, 王书民, 王帮兵, 等 2005 秦始皇陵地宫地球物理探测成果与技术 (北京: 地质出版社) 第17—58页

    Yu G M, Wang S M, Wang B B, et al. 2005 Geophysical Exploration for the Underground Palace of Emperor Qinshihuang Mausoleum (Beijing: Geological Publishing House) pp17–58 (in Chinese)

    [23]

    吴明清, 文启忠, 潘景瑜, 刁桂仪 1996 自然科学进展 01 82

    Wu M Q, Wen Q Z, Pan J Y, Diao G Y 1996 Prog. Nat. Sci. 01 82

    [24]

    Gaisser T K 1990 Cosmic Rays and Particle Physics (New York: Cambridge University Press) p71

    [25]

    Reyna D 2006 arXiv: 0604145v2 [hep-ph]

    [26]

    Smith J A, Duller N M 1959 J. Geophys. Res. 64 2297Google Scholar

    [27]

    Su N, Liu Y Y, Wang L, Wu B, Cheng J P 2021 Front. Energy Res. 9 640Google Scholar

  • [1] 李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友. 基于缪子离散能量的材料鉴别实验研究. 物理学报, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [2] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [3] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [4] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [5] 李颖涵, 安竹, 朱敬军, 李玲. keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究. 物理学报, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [6] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [7] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [8] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法. 物理学报, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [10] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [14] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6806
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 修回日期:  2021-11-11
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回