-
联苯烯单层由碳原子的四元、六元和八元环组成, 具有与石墨烯相似的单原子层结构. 2021年5月, Science首次报道了该材料的实验合成, 引起了科研工作者的极大关注. 基于第一性原理的密度泛函方法, 研究了铁原子在联苯烯单层的吸附构型并分析了其电子结构. 结构优化、吸附能和分子动力学的计算表明, 联苯烯单层的四元环空位是铁原子最稳定的吸附位点, 吸附能可达1.56 eV. 电子态密度计算表明铁3d电子与碳的2p电子有较强的轨道杂化, 同时电荷转移计算显示铁原子向近邻碳原子转移的电荷约为0.73个电子, 说明联苯烯单层与吸附的铁原子之间形成了稳定的化学键. 另外, 铁原子吸附于联苯烯单层后体系显磁性, 铁原子上局域磁矩大小约为 1.81 μB, 方向指向面外. 因此, 本文确认了联苯烯单层是比石墨烯更好的铁原子吸附载体且体系有磁性, 这为研究吸附材料的电磁、输运、催化等特性提供了新的平台.Biphenylene monolayer is composed of four-, six- and eight-membered carbon rings and has a monatomic layer structure similar to graphene. It was synthesized in experiment recently and reported in Science in May 2021, which has attracted considerable attention in the research field of two-dimensional materials. By the density functional method of the first principle, we study the adsorption configuration of Fe atoms on biphenylene monolayer and analyze its electronic structure. The calculation of structural optimization, adsorption energy and molecular dynamics show that the biphenylene monolayer is a good matrix of Fe atoms. For Fe atoms, the hollow site in the four-membered ring of the biphenylene monolayer is the most stable adsorption site, and the adsorption energy can reach 1.56 eV. The calculation of charge transfer and density of states show that a stable bond can be formed between biphenylene monolayer and Fe atoms, and 0.73 electron is transferred from Fe atom to the neighbored carbon atom. After Fe atom being absorbed, biphenylene monolayer is magnetic, and the magnetic moment of Fe atom is about 1.81
${\mu}_{\mathrm{B}}$ and points out of the plane. Compared with graphene, biphenylene monolayer adsorbs Fe atoms more stably, which provides a new platform for studying the electromagnetic, transport and catalytic properties of two-dimensional materials with adatoms.-
Keywords:
- biphenylene /
- adsorption /
- electronic structure /
- first-principles calculation
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M 2021 Science 372 852Google Scholar
[3] Zhang R S, Jiang X W 2019 Front. Phys. 14 13401Google Scholar
[4] Tang C, Kour G, Du A J 2019 Chin. Phys. B 28 107306Google Scholar
[5] Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar
[6] Liu D P, Zhang S, Gao M, Yan X W 2021 Phys. Rev. B 103 125407Google Scholar
[7] Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar
[8] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar
[9] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar
[10] Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano. 5 2593Google Scholar
[11] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar
[12] Song Q, Wang B, Deng K, Feng X L, Wagner M, Gale J D, Mullen K, Zhi L J 2013 J. Mater. Chem. C 1 38
[13] Liu W, Miao M S, Liu J Y 2015 RSC Adv. 5 70766Google Scholar
[14] Hudspeth M A, Whitman B W, Barone V, Peralta J E 2010 ACS Nano. 4 4565Google Scholar
[15] Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F 2016 Rsc Adv. 6 49505Google Scholar
[16] Konstantinova E, Dantas S O, Barone P M V B 2006 Phys. Rev. B 74 35417Google Scholar
[17] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar
[18] Mandal B, Sarkar S, Pramanik A, Sarkar P 2013 Phys. Chem. Chem. Phys. 15 21001Google Scholar
[19] Deza M, Fowler P W, Shtogrin M, Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325Google Scholar
[20] Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar
[21] Bucknum M J, Castro E A 2008 Solid State Sci. 10 1245Google Scholar
[22] Zhu H Y, Balaban A T, Klein D J, Zivkovic T P 1994 J. Chem. Phys. 101 5281Google Scholar
[23] Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 11107Google Scholar
[24] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar
[25] Su C, Jiang H, Feng J 2013 Phys. Rev. B 87 075453Google Scholar
[26] Tang C P, Xiong S J 2012 AIP Adv. 2 042147Google Scholar
[27] Nulakani N V R, Kamaraj M, Subramanian V 2015 RSC Adv. 5 78910Google Scholar
[28] Wang X Q, Li H D, Wang J T 2013 Phys. Chem. Chem. Phys. 15 2024Google Scholar
[29] Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar
[30] Pereira L F C, Mortazavi B, Makaremi M, Rabczuk T 2016 RSC Adv. 6 57773Google Scholar
[31] Chopra S 2016 RSC Adv. 6 89934Google Scholar
[32] Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L 2018 Carbon 136 248Google Scholar
[33] Tahara K, Yamamoto Y, Gross D E, Kozuma H, Arikuma Y, Ohta K, Koizumi Y, Gao Y, Shimizu Y, Seki S, Kamada K, Moore J S, Tobe Y 2013 Chem. Eur. J. 19 11251Google Scholar
[34] Balaban A T, Rentia C C, Ciupitu E 1968 Rev. Roum. Chim. 13 231
[35] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar
[36] Yang W J, Gao Z Y, Liu X S, Ma C Z, Ding X L, Yan W P 2019 Fuel 243 262Google Scholar
[37] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar
[38] Peng Y, Lu B Z, Chen S W 2018 Adv. Mater. 30 1801995Google Scholar
[39] Luo X, Wei W Q, Wang H J, Gu W L, Kaneko T, Yoshida Y, Zhao X, Zhu C Z 2020 Nano-Micro. Lett. 12 163Google Scholar
[40] Wei X Q, Song S J, Wu N N, Luo X, Zheng L R, Jiao L, Wang H J, Fang Q, Hu L, Y, Gu W L, Song W Y, Zhu C Z 2021 Nano Energy 84 105840Google Scholar
[41] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[42] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[43] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[44] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[45] Cococcioni M, Gironcoli S D 2005 Phys. Rev. B 71 035105Google Scholar
[46] Grimme S 2006 J. Comp. Chem. 27 1787Google Scholar
[47] Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar
[48] Zanella I, Fagan S B, Mota R, Fazzio A 2008 J. Phys. Chem. C 112 9163Google Scholar
[49] Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar
[50] Sun Y J, Zhuo Z W, Wu X J, Yang J L 2017 Nano Lett. 17 2771Google Scholar
[51] Zhuang H L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar
[52] Hu W, Wang C, Tan H, Duan H L, Li G N, Li N, Ji Q Q, Lu Y, Wang Y, Sun Z H, Hu F C, Yan W S 2021 Nat. Commun. 12 1854Google Scholar
[53] Xu K, Ding H, Lü H F, Chen P Z, Lu X L, Han Cheng H, Zhou T P, Liu S, Wu X J, Wu C Z, Xie Y 2016 Adv. Mater. 28 3326Google Scholar
-
图 1 (a)石墨烯和(b)联苯烯单层及其需考虑的吸附位点; (c), (f); (d), (g); (e), (h) 分别是铁原子吸附于联苯烯单层四、六和八元环空位(H位点)的俯视图及侧视图
Fig. 1. (a) and (b) Graphene and biphenene networks and the adsorption sites of Fe atoms; (c) and (f), (d) and (g), (e) and (h) are top and side views of Fe atoms on the top of 4-, 6-, and 8-membered ring (H sites) of biphenene networks, respectively.
图 2 (a), (b)和(c)是在1000 K下, 铁原子分别吸附于联苯烯单层的四、六和八元环后能量随时间的演化曲线; (d) 在1000 K下, 铁原子在八元环空位的运动情况
Fig. 2. (a), (b) and (c) Time evolution curves of the energy of Fe atoms adsorbed on the 4-, 6- and 8-membered rings of the biphenene network at 1000 K, respectively; (d) motion of iron atom absorbed on hollow site of 8-membered ring at 1000 K.
图 6 联苯烯单层均匀吸附铁原子后的几种磁序结构 (a)铁磁(FM); (b) 共线反铁磁序一(Coll-I); (c) 共线反铁磁序二(Coll-II); , (d) 奈尔反铁磁序(Nèel)
Fig. 6. Sketches of several magnetic orders in Fe-adsorbed biphenene monolayer: (a) Ferromagnetic order; (b) collinear anti-ferromagnetic order I; (c) collinear anti-ferromagnetic order II; (d) Nèel antiferromagnetic order.
表 1 铁原子吸附在石墨烯和联苯烯单层各位点的吸附能
Table 1. Adsorption energy of Fe atom adsorbed on each point of graphene and biphenene.
吸附位点 吸附能/eV 吸附位点 吸附能/eV 石墨烯H 0.84 联苯烯单层B1 1.29 石墨烯B 0.28 联苯烯单层B2 1.16 石墨烯T 0.16 联苯烯单层B3 0.88 联苯烯单层H1 1.56 联苯烯单层B4 0.88 联苯烯单层H2 1.53 联苯烯单层T1 0.94 联苯烯单层H3 1.12 联苯烯单层T2 0.96 表 2 铁原子吸附联苯烯单层不同磁序下的能量
Table 2. Energies of Fe atom adsorbed biphenene layer in various magnetic orders.
FM/eV Coll-I/eV Coll-II/eV Nèel/eV GGA –230.673 –230.309 –230.599 –230.683 GGA + U –222.790 –222.799 –223.818 –224.042 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M 2021 Science 372 852Google Scholar
[3] Zhang R S, Jiang X W 2019 Front. Phys. 14 13401Google Scholar
[4] Tang C, Kour G, Du A J 2019 Chin. Phys. B 28 107306Google Scholar
[5] Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar
[6] Liu D P, Zhang S, Gao M, Yan X W 2021 Phys. Rev. B 103 125407Google Scholar
[7] Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar
[8] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar
[9] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar
[10] Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano. 5 2593Google Scholar
[11] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar
[12] Song Q, Wang B, Deng K, Feng X L, Wagner M, Gale J D, Mullen K, Zhi L J 2013 J. Mater. Chem. C 1 38
[13] Liu W, Miao M S, Liu J Y 2015 RSC Adv. 5 70766Google Scholar
[14] Hudspeth M A, Whitman B W, Barone V, Peralta J E 2010 ACS Nano. 4 4565Google Scholar
[15] Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F 2016 Rsc Adv. 6 49505Google Scholar
[16] Konstantinova E, Dantas S O, Barone P M V B 2006 Phys. Rev. B 74 35417Google Scholar
[17] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar
[18] Mandal B, Sarkar S, Pramanik A, Sarkar P 2013 Phys. Chem. Chem. Phys. 15 21001Google Scholar
[19] Deza M, Fowler P W, Shtogrin M, Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325Google Scholar
[20] Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar
[21] Bucknum M J, Castro E A 2008 Solid State Sci. 10 1245Google Scholar
[22] Zhu H Y, Balaban A T, Klein D J, Zivkovic T P 1994 J. Chem. Phys. 101 5281Google Scholar
[23] Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 11107Google Scholar
[24] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar
[25] Su C, Jiang H, Feng J 2013 Phys. Rev. B 87 075453Google Scholar
[26] Tang C P, Xiong S J 2012 AIP Adv. 2 042147Google Scholar
[27] Nulakani N V R, Kamaraj M, Subramanian V 2015 RSC Adv. 5 78910Google Scholar
[28] Wang X Q, Li H D, Wang J T 2013 Phys. Chem. Chem. Phys. 15 2024Google Scholar
[29] Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar
[30] Pereira L F C, Mortazavi B, Makaremi M, Rabczuk T 2016 RSC Adv. 6 57773Google Scholar
[31] Chopra S 2016 RSC Adv. 6 89934Google Scholar
[32] Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L 2018 Carbon 136 248Google Scholar
[33] Tahara K, Yamamoto Y, Gross D E, Kozuma H, Arikuma Y, Ohta K, Koizumi Y, Gao Y, Shimizu Y, Seki S, Kamada K, Moore J S, Tobe Y 2013 Chem. Eur. J. 19 11251Google Scholar
[34] Balaban A T, Rentia C C, Ciupitu E 1968 Rev. Roum. Chim. 13 231
[35] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar
[36] Yang W J, Gao Z Y, Liu X S, Ma C Z, Ding X L, Yan W P 2019 Fuel 243 262Google Scholar
[37] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar
[38] Peng Y, Lu B Z, Chen S W 2018 Adv. Mater. 30 1801995Google Scholar
[39] Luo X, Wei W Q, Wang H J, Gu W L, Kaneko T, Yoshida Y, Zhao X, Zhu C Z 2020 Nano-Micro. Lett. 12 163Google Scholar
[40] Wei X Q, Song S J, Wu N N, Luo X, Zheng L R, Jiao L, Wang H J, Fang Q, Hu L, Y, Gu W L, Song W Y, Zhu C Z 2021 Nano Energy 84 105840Google Scholar
[41] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[42] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[43] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[44] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[45] Cococcioni M, Gironcoli S D 2005 Phys. Rev. B 71 035105Google Scholar
[46] Grimme S 2006 J. Comp. Chem. 27 1787Google Scholar
[47] Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar
[48] Zanella I, Fagan S B, Mota R, Fazzio A 2008 J. Phys. Chem. C 112 9163Google Scholar
[49] Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar
[50] Sun Y J, Zhuo Z W, Wu X J, Yang J L 2017 Nano Lett. 17 2771Google Scholar
[51] Zhuang H L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar
[52] Hu W, Wang C, Tan H, Duan H L, Li G N, Li N, Ji Q Q, Lu Y, Wang Y, Sun Z H, Hu F C, Yan W S 2021 Nat. Commun. 12 1854Google Scholar
[53] Xu K, Ding H, Lü H F, Chen P Z, Lu X L, Han Cheng H, Zhou T P, Liu S, Wu X J, Wu C Z, Xie Y 2016 Adv. Mater. 28 3326Google Scholar
计量
- 文章访问数: 5977
- PDF下载量: 178
- 被引次数: 0