搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁原子吸附联苯烯单层电子结构的第一性原理

吴洪芬 冯盼君 张烁 刘大鹏 高淼 闫循旺

引用本文:
Citation:

铁原子吸附联苯烯单层电子结构的第一性原理

吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺

First-principles study of Fe atom adsorbed biphenylene monolayer

Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang
PDF
HTML
导出引用
  • 联苯烯单层由碳原子的四元、六元和八元环组成, 具有与石墨烯相似的单原子层结构. 2021年5月, Science首次报道了该材料的实验合成, 引起了科研工作者的极大关注. 基于第一性原理的密度泛函方法, 研究了铁原子在联苯烯单层的吸附构型并分析了其电子结构. 结构优化、吸附能和分子动力学的计算表明, 联苯烯单层的四元环空位是铁原子最稳定的吸附位点, 吸附能可达1.56 eV. 电子态密度计算表明铁3d电子与碳的2p电子有较强的轨道杂化, 同时电荷转移计算显示铁原子向近邻碳原子转移的电荷约为0.73个电子, 说明联苯烯单层与吸附的铁原子之间形成了稳定的化学键. 另外, 铁原子吸附于联苯烯单层后体系显磁性, 铁原子上局域磁矩大小约为 1.81 μB, 方向指向面外. 因此, 本文确认了联苯烯单层是比石墨烯更好的铁原子吸附载体且体系有磁性, 这为研究吸附材料的电磁、输运、催化等特性提供了新的平台.
    Biphenylene monolayer is composed of four-, six- and eight-membered carbon rings and has a monatomic layer structure similar to graphene. It was synthesized in experiment recently and reported in Science in May 2021, which has attracted considerable attention in the research field of two-dimensional materials. By the density functional method of the first principle, we study the adsorption configuration of Fe atoms on biphenylene monolayer and analyze its electronic structure. The calculation of structural optimization, adsorption energy and molecular dynamics show that the biphenylene monolayer is a good matrix of Fe atoms. For Fe atoms, the hollow site in the four-membered ring of the biphenylene monolayer is the most stable adsorption site, and the adsorption energy can reach 1.56 eV. The calculation of charge transfer and density of states show that a stable bond can be formed between biphenylene monolayer and Fe atoms, and 0.73 electron is transferred from Fe atom to the neighbored carbon atom. After Fe atom being absorbed, biphenylene monolayer is magnetic, and the magnetic moment of Fe atom is about 1.81 ${\mu}_{\mathrm{B}}$ and points out of the plane. Compared with graphene, biphenylene monolayer adsorbs Fe atoms more stably, which provides a new platform for studying the electromagnetic, transport and catalytic properties of two-dimensional materials with adatoms.
      通信作者: 闫循旺, yanxunwang@163.com
    • 基金项目: 国家自然科学基金(批准号: 11974207, 11974194, 11474004)和山东省重大基础研究项目(批准号: ZR2021ZD01)资助的课题
      Corresponding author: Yan Xun-Wang, yanxunwang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974207, 11974194, 11474004) and the Major Basic Program of Natural Science Foundation of Shandong Province, China (Grant No. ZR2021ZD01).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M 2021 Science 372 852Google Scholar

    [3]

    Zhang R S, Jiang X W 2019 Front. Phys. 14 13401Google Scholar

    [4]

    Tang C, Kour G, Du A J 2019 Chin. Phys. B 28 107306Google Scholar

    [5]

    Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar

    [6]

    Liu D P, Zhang S, Gao M, Yan X W 2021 Phys. Rev. B 103 125407Google Scholar

    [7]

    Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar

    [8]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano. 5 2593Google Scholar

    [11]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [12]

    Song Q, Wang B, Deng K, Feng X L, Wagner M, Gale J D, Mullen K, Zhi L J 2013 J. Mater. Chem. C 1 38

    [13]

    Liu W, Miao M S, Liu J Y 2015 RSC Adv. 5 70766Google Scholar

    [14]

    Hudspeth M A, Whitman B W, Barone V, Peralta J E 2010 ACS Nano. 4 4565Google Scholar

    [15]

    Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F 2016 Rsc Adv. 6 49505Google Scholar

    [16]

    Konstantinova E, Dantas S O, Barone P M V B 2006 Phys. Rev. B 74 35417Google Scholar

    [17]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar

    [18]

    Mandal B, Sarkar S, Pramanik A, Sarkar P 2013 Phys. Chem. Chem. Phys. 15 21001Google Scholar

    [19]

    Deza M, Fowler P W, Shtogrin M, Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325Google Scholar

    [20]

    Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar

    [21]

    Bucknum M J, Castro E A 2008 Solid State Sci. 10 1245Google Scholar

    [22]

    Zhu H Y, Balaban A T, Klein D J, Zivkovic T P 1994 J. Chem. Phys. 101 5281Google Scholar

    [23]

    Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 11107Google Scholar

    [24]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [25]

    Su C, Jiang H, Feng J 2013 Phys. Rev. B 87 075453Google Scholar

    [26]

    Tang C P, Xiong S J 2012 AIP Adv. 2 042147Google Scholar

    [27]

    Nulakani N V R, Kamaraj M, Subramanian V 2015 RSC Adv. 5 78910Google Scholar

    [28]

    Wang X Q, Li H D, Wang J T 2013 Phys. Chem. Chem. Phys. 15 2024Google Scholar

    [29]

    Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar

    [30]

    Pereira L F C, Mortazavi B, Makaremi M, Rabczuk T 2016 RSC Adv. 6 57773Google Scholar

    [31]

    Chopra S 2016 RSC Adv. 6 89934Google Scholar

    [32]

    Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L 2018 Carbon 136 248Google Scholar

    [33]

    Tahara K, Yamamoto Y, Gross D E, Kozuma H, Arikuma Y, Ohta K, Koizumi Y, Gao Y, Shimizu Y, Seki S, Kamada K, Moore J S, Tobe Y 2013 Chem. Eur. J. 19 11251Google Scholar

    [34]

    Balaban A T, Rentia C C, Ciupitu E 1968 Rev. Roum. Chim. 13 231

    [35]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

    [36]

    Yang W J, Gao Z Y, Liu X S, Ma C Z, Ding X L, Yan W P 2019 Fuel 243 262Google Scholar

    [37]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [38]

    Peng Y, Lu B Z, Chen S W 2018 Adv. Mater. 30 1801995Google Scholar

    [39]

    Luo X, Wei W Q, Wang H J, Gu W L, Kaneko T, Yoshida Y, Zhao X, Zhu C Z 2020 Nano-Micro. Lett. 12 163Google Scholar

    [40]

    Wei X Q, Song S J, Wu N N, Luo X, Zheng L R, Jiao L, Wang H J, Fang Q, Hu L, Y, Gu W L, Song W Y, Zhu C Z 2021 Nano Energy 84 105840Google Scholar

    [41]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [43]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [45]

    Cococcioni M, Gironcoli S D 2005 Phys. Rev. B 71 035105Google Scholar

    [46]

    Grimme S 2006 J. Comp. Chem. 27 1787Google Scholar

    [47]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [48]

    Zanella I, Fagan S B, Mota R, Fazzio A 2008 J. Phys. Chem. C 112 9163Google Scholar

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [50]

    Sun Y J, Zhuo Z W, Wu X J, Yang J L 2017 Nano Lett. 17 2771Google Scholar

    [51]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar

    [52]

    Hu W, Wang C, Tan H, Duan H L, Li G N, Li N, Ji Q Q, Lu Y, Wang Y, Sun Z H, Hu F C, Yan W S 2021 Nat. Commun. 12 1854Google Scholar

    [53]

    Xu K, Ding H, Lü H F, Chen P Z, Lu X L, Han Cheng H, Zhou T P, Liu S, Wu X J, Wu C Z, Xie Y 2016 Adv. Mater. 28 3326Google Scholar

  • 图 1  (a)石墨烯和(b)联苯烯单层及其需考虑的吸附位点; (c), (f); (d), (g); (e), (h) 分别是铁原子吸附于联苯烯单层四、六和八元环空位(H位点)的俯视图及侧视图

    Fig. 1.  (a) and (b) Graphene and biphenene networks and the adsorption sites of Fe atoms; (c) and (f), (d) and (g), (e) and (h) are top and side views of Fe atoms on the top of 4-, 6-, and 8-membered ring (H sites) of biphenene networks, respectively.

    图 2  (a), (b)和(c)是在1000 K下, 铁原子分别吸附于联苯烯单层的四、六和八元环后能量随时间的演化曲线; (d) 在1000 K下, 铁原子在八元环空位的运动情况

    Fig. 2.  (a), (b) and (c) Time evolution curves of the energy of Fe atoms adsorbed on the 4-, 6- and 8-membered rings of the biphenene network at 1000 K, respectively; (d) motion of iron atom absorbed on hollow site of 8-membered ring at 1000 K.

    图 3  (a), (b); (c), (d); (e), (f)分别是铁原子吸附于联苯烯单层四、六、八元环空位(H位点)情况下的差分电荷俯视图及侧视图

    Fig. 3.  (a), (b); (c), (d); (e), (f) are top and side views of differential charge when Fe atoms are adsorbed on top of 4-, 6- and 8-membered ring (H sites) of biphenene networks, respectively.

    图 4  (a)石墨烯和(b)联苯烯单层的能带及态密度图(费米能级设为0 eV)

    Fig. 4.  Energy band and density of states of (a) graphene and (b) biphenene network. The Fermi energy is set to zero.

    图 5  铁原子吸附于联苯烯单层四元环空位时的投影态密度图(费米能级为零) (a), (c) GGA计算; (b), (d) GGA + U计算

    Fig. 5.  Projected density of states of Fe atoms adsorbed on the top of 4-membered ring of biphenene network: (a) and (c) GGA calculations; (b) and (d) GGA + U calculations. The Fermi energy is set to zero.

    图 6  联苯烯单层均匀吸附铁原子后的几种磁序结构 (a)铁磁(FM); (b) 共线反铁磁序一(Coll-I); (c) 共线反铁磁序二(Coll-II); , (d) 奈尔反铁磁序(Nèel)

    Fig. 6.  Sketches of several magnetic orders in Fe-adsorbed biphenene monolayer: (a) Ferromagnetic order; (b) collinear anti-ferromagnetic order I; (c) collinear anti-ferromagnetic order II; (d) Nèel antiferromagnetic order.

    图 7  自洽计算(蓝线)和非自洽计算(红线)铁原子d电子数对Hubbard U的响应.

    Fig. 7.  Response of d electron number of Fe atom adsorbed on biphenene network to Hubbard U in self-consistent and non-self-consistent calculations.

    表 1  铁原子吸附在石墨烯和联苯烯单层各位点的吸附能

    Table 1.  Adsorption energy of Fe atom adsorbed on each point of graphene and biphenene.

    吸附位点吸附能/eV吸附位点吸附能/eV
    石墨烯H0.84联苯烯单层B11.29
    石墨烯B0.28联苯烯单层B21.16
    石墨烯T0.16联苯烯单层B30.88
    联苯烯单层H11.56联苯烯单层B40.88
    联苯烯单层H21.53联苯烯单层T10.94
    联苯烯单层H31.12联苯烯单层T20.96
    下载: 导出CSV

    表 2  铁原子吸附联苯烯单层不同磁序下的能量

    Table 2.  Energies of Fe atom adsorbed biphenene layer in various magnetic orders.

    FM/eVColl-I/eVColl-II/eVNèel/eV
    GGA–230.673–230.309–230.599–230.683
    GGA + U–222.790–222.799–223.818–224.042
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M 2021 Science 372 852Google Scholar

    [3]

    Zhang R S, Jiang X W 2019 Front. Phys. 14 13401Google Scholar

    [4]

    Tang C, Kour G, Du A J 2019 Chin. Phys. B 28 107306Google Scholar

    [5]

    Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar

    [6]

    Liu D P, Zhang S, Gao M, Yan X W 2021 Phys. Rev. B 103 125407Google Scholar

    [7]

    Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar

    [8]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano. 5 2593Google Scholar

    [11]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [12]

    Song Q, Wang B, Deng K, Feng X L, Wagner M, Gale J D, Mullen K, Zhi L J 2013 J. Mater. Chem. C 1 38

    [13]

    Liu W, Miao M S, Liu J Y 2015 RSC Adv. 5 70766Google Scholar

    [14]

    Hudspeth M A, Whitman B W, Barone V, Peralta J E 2010 ACS Nano. 4 4565Google Scholar

    [15]

    Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F 2016 Rsc Adv. 6 49505Google Scholar

    [16]

    Konstantinova E, Dantas S O, Barone P M V B 2006 Phys. Rev. B 74 35417Google Scholar

    [17]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar

    [18]

    Mandal B, Sarkar S, Pramanik A, Sarkar P 2013 Phys. Chem. Chem. Phys. 15 21001Google Scholar

    [19]

    Deza M, Fowler P W, Shtogrin M, Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325Google Scholar

    [20]

    Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716Google Scholar

    [21]

    Bucknum M J, Castro E A 2008 Solid State Sci. 10 1245Google Scholar

    [22]

    Zhu H Y, Balaban A T, Klein D J, Zivkovic T P 1994 J. Chem. Phys. 101 5281Google Scholar

    [23]

    Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 11107Google Scholar

    [24]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [25]

    Su C, Jiang H, Feng J 2013 Phys. Rev. B 87 075453Google Scholar

    [26]

    Tang C P, Xiong S J 2012 AIP Adv. 2 042147Google Scholar

    [27]

    Nulakani N V R, Kamaraj M, Subramanian V 2015 RSC Adv. 5 78910Google Scholar

    [28]

    Wang X Q, Li H D, Wang J T 2013 Phys. Chem. Chem. Phys. 15 2024Google Scholar

    [29]

    Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar

    [30]

    Pereira L F C, Mortazavi B, Makaremi M, Rabczuk T 2016 RSC Adv. 6 57773Google Scholar

    [31]

    Chopra S 2016 RSC Adv. 6 89934Google Scholar

    [32]

    Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L 2018 Carbon 136 248Google Scholar

    [33]

    Tahara K, Yamamoto Y, Gross D E, Kozuma H, Arikuma Y, Ohta K, Koizumi Y, Gao Y, Shimizu Y, Seki S, Kamada K, Moore J S, Tobe Y 2013 Chem. Eur. J. 19 11251Google Scholar

    [34]

    Balaban A T, Rentia C C, Ciupitu E 1968 Rev. Roum. Chim. 13 231

    [35]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

    [36]

    Yang W J, Gao Z Y, Liu X S, Ma C Z, Ding X L, Yan W P 2019 Fuel 243 262Google Scholar

    [37]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykko P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [38]

    Peng Y, Lu B Z, Chen S W 2018 Adv. Mater. 30 1801995Google Scholar

    [39]

    Luo X, Wei W Q, Wang H J, Gu W L, Kaneko T, Yoshida Y, Zhao X, Zhu C Z 2020 Nano-Micro. Lett. 12 163Google Scholar

    [40]

    Wei X Q, Song S J, Wu N N, Luo X, Zheng L R, Jiao L, Wang H J, Fang Q, Hu L, Y, Gu W L, Song W Y, Zhu C Z 2021 Nano Energy 84 105840Google Scholar

    [41]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [43]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [45]

    Cococcioni M, Gironcoli S D 2005 Phys. Rev. B 71 035105Google Scholar

    [46]

    Grimme S 2006 J. Comp. Chem. 27 1787Google Scholar

    [47]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [48]

    Zanella I, Fagan S B, Mota R, Fazzio A 2008 J. Phys. Chem. C 112 9163Google Scholar

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [50]

    Sun Y J, Zhuo Z W, Wu X J, Yang J L 2017 Nano Lett. 17 2771Google Scholar

    [51]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar

    [52]

    Hu W, Wang C, Tan H, Duan H L, Li G N, Li N, Ji Q Q, Lu Y, Wang Y, Sun Z H, Hu F C, Yan W S 2021 Nat. Commun. 12 1854Google Scholar

    [53]

    Xu K, Ding H, Lü H F, Chen P Z, Lu X L, Han Cheng H, Zhou T P, Liu S, Wu X J, Wu C Z, Xie Y 2016 Adv. Mater. 28 3326Google Scholar

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 代雪峰, 贡同. 铁磁性电极条件下T型双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [3] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [4] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [7] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [9] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [10] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [11] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [12] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [13] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [14] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [15] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [16] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [17] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [18] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [19] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
计量
  • 文章访问数:  3821
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-09-30
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回