搜索

x
中国物理学会期刊

退相位环境下Werner态在石墨烯基量子通道中的隐形传输

CSTR: 32037.14.aps.71.20211881

Teleportation of Werner state via graphene-based quantum channels under dephasing environment

CSTR: 32037.14.aps.71.20211881
PDF
HTML
导出引用
  • 基于有效低能理论, 研究了退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 结果表明, 输出态纠缠度总是随着输入态纠缠度的增大而增大, 而相应的保真度却正好相反; 对于给定的输入态, 量子通道中的纠缠越大, 输出态的品质就越高. 对于石墨烯基量子通道, 低温和弱库仑排斥势可以减缓其纠缠资源在退相位环境中的衰减, 且温度低于40 K, 电子间库仑排斥势小于6 eV时, 输出态的平均保真度可以达到80%以上. 这就说明石墨烯材料在量子信息领域中具有潜在的应用价值.

     

    The teleportation of Werner state in the graphene-based quantum channels under the dephasing environment is studied through the effective low-energy theory in this paper. The results show that the output entanglement normally reaches a higher level as the input entanglement increases, while the performance of the corresponding fidelity is opposite. Given the input state, the greater entanglement in the quantum channel can provide the higher-quality output state. For graphene-based quantum channels, the low temperature and weak Coulomb repulsive potential can decelerate the attenuation of entanglement resources in the dephasing environment. Moreover, when the temperature is lower than 40 K and the coulomb repulsive potential between electrons is less than 6 eV, the average fidelity of the output state reaches more than 80%. These results indicate that graphene has potential applications in quantum information.

     

    目录

    /

    返回文章
    返回