搜索

x
中国物理学会期刊

钛酸钡介电调控提升纸基摩擦纳米发电机输出性能

CSTR: 32037.14.aps.71.20212022

Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator

CSTR: 32037.14.aps.71.20212022
PDF
HTML
导出引用
  • 摩擦纳米发电机作为一种能够将机械能转换为电能的新型能源转换装置, 自发明以来便引起了广泛关注, 然而其环保性能由于原料来源多为合成高分子材料而受到制约. 采用绿色环保的纤维素材料制备摩擦纳米发电机是解决上述问题的重要方式之一. 本研究以竹纤维素和钛酸钡(BaTiO3)为原料, 结合湿法造纸和掺杂改性制备了纤维素/钛酸钡复合纸, 并将其作为正极摩擦层构建了纸基摩擦纳米发电机(cellulose/barium titanate-triboelectric nanogenerator, C/BT-TENG). 结果表明, BaTiO3的加入显著提升了复合纸的相对介电常数, C/BT-TENG的输出性能随着BaTiO3掺杂量增加而提升, 在4%掺杂量时, C/BT-TENG的开路电压和短路电流达到最大值118.5 V 和13.51 µA, 相比纯纤维素纸作为正极摩擦层时, 分别提升了51.3% 和41.2%. 通过模型法分析了介电调控提升C/BT-TENG输出性能的机理. 此外, C/BT-TENG具有良好的输出性能和工作稳定性, 在负载电阻为5 MΩ时, 其获得最大输出功率密度0.36 W/m2, 表现出良好的应用前景.

     

    As a new energy conversion device that can convert mechanical energy into electrical energy, triboelectric nanogenerator has attracted extensive attention since its invention. However, its environmental performance is limited because the raw materials are mostly synthetic polymer materials. Using green and environmentally friendly cellulose materials to prepare triboelectric nanogenerators is one of the important ways to solve the above problems. In this study, cellulose/barium titanate composite paper is prepared by using bamboo cellulose and barium carbonate (BaTiO3) as raw materials and combining wet papermaking and doping modification. The paper based triboelectric nanogenerator (C/BT-TENG) is constructed by using the cellulose/barium titanate composite paper as a positive friction layer. The results show that the addition of BaTiO3 significantly improves the relative dielectric constant of the composite paper, and the output performance of C/BT-TENG increases with the augment of BaTiO3 doping amount. When the doping amount is 4%, the open-circuit voltage and short-circuit current of C/BT-TENG reach the maximum values of 118.5 V and 13.51 µA, respectively, which are 51.3% and 41.2% higher than when pure cellulose paper is used as the positive friction layer. The mechanism of dielectric regulation to improve the C/BT-TENG output performance is analyzed by the modeling method. In addition, the C/BT-TENG has a good output performance and operation stability. When the load resistance is 5 MΩ, the maximum output power density of C/BT-TENG reaches 0.36 W/m2, simplying a good application prospect.

     

    目录

    /

    返回文章
    返回