搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeNiMo/SiO2复合粉芯的制备与软磁性能调控

熊政伟 杨江 王雨 杨陆 管弦 曹林洪 王进 高志鹏

引用本文:
Citation:

FeNiMo/SiO2复合粉芯的制备与软磁性能调控

熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏

Preparation of FeNiMo/SiO2 composite core and regulation of soft magnetic properties

Xiong Zheng-Wei, Yang Jiang, Wang Yu, Yang Lu, Guan Xian, Cao Lin-Hong, Wang Jin, Gao Zhi-Peng
PDF
HTML
导出引用
  • 目前金属软磁粉芯材料在高频电感等电子元件的应用前景广阔, 然而其主要的构成元素属于过渡金属, 表面易形成致密的氧化层, 影响其软磁性能的调控. 为了解决这些问题, 本文引入H2/Ar混合气体高温预处理工艺对FeNiMo原粉进行还原, 证实了还原性气氛高温处理可以有效地去除材料表面的金属氧化物, 增加金属单质的含量, 进而显著提升FeNiMo原粉的有效磁导率. 对预处理后的FeNiMo粉末进行SiO2绝缘包覆, 所获得的FeNiMo/SiO2软磁复合材料表面包覆均匀; 与未处理FeNiMo原粉包覆SiO2所形成的软磁复合粉芯相比, H2/Ar混合气体高温预处理后的FeNiMo/SiO2具有更高的有效磁导率、更低的损耗. 与同类其他软磁复合粉芯相比, 通过H2/Ar混合气体高温预处理工艺和绝缘包覆工艺的协同效应, 所制备的FeNiMo/SiO2复合粉芯具有优异的软磁性能. 因此经过还原性气氛高温预处理工艺后的绝缘包覆可以更大程度地提升软磁粉芯复合材料的有效磁导率, 降低其损耗, 为软磁复合粉芯材料性能的提升提供了一种新的策略.
    Nowadays, metal soft magnetic materials are mainly used in electronic components such as high-frequency inductors. Since all the elements in the soft magnetic alloys are transition metals, dense oxide layer is easily formed on their surfaces, which can affect the regulation of soft magnetic properties. In order to solve the problems, in this work, an innovative high-temperature pretreatment process in H2/Ar mixture is adopted to pretreat FeNiMo raw powders. We confirm that the high temperature treatment in reducing atmosphere can effectively remove metal oxides from the FeNiMo material surface and increase the content of elemental states, thereby further significantly improving the effective permeability of FeNiMo raw powders. The pretreated FeNiMo powder is evenly coated with SiO2 layers, forming the FeNiMo/SiO2 soft magnetic composites. Compared with the untreated FeNiMo powder coated with SiO2, the FeNiMo/SiO2 pretreated with H2/Ar mixture gas at high temperatures has high effective permeability and low loss. Our FeNiMo/SiO2 cores prepared by the synergistic effect of high-temperature pretreatment process in H2/Ar mixture and insulation coating process have more excellent soft magnetic properties than other iron-based soft magnetic composites. Therefore, the insulation coating after being pretreated at high temperature in reducing atmosphere can greatly improve the permeability and reduce the core loss of soft magnetic composites. This will provide a new strategy for enhancing the soft magnetic properties of the composite cores.
      通信作者: 熊政伟, zw-xiong@swust.edu.cn ; 王雨, wangyu_dzkjdx@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 11904299, U1930124)资助的课题.
      Corresponding author: Xiong Zheng-Wei, zw-xiong@swust.edu.cn ; Wang Yu, wangyu_dzkjdx@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299, U1930124).
    [1]

    Xie D Z, Lin K H, Lin S T 2014 J. Magn. Magn. Mater. 353 34Google Scholar

    [2]

    Ustinovshikov Y, Shabanova I 2013 J. Alloys Compd. 578 292Google Scholar

    [3]

    Füzer J, Kollár P, Olekšáková D, Roth S 2009 J. Alloys Compd. 483 557Google Scholar

    [4]

    丁燕红, 李明吉, 杨保和, 马叙 2011 物理学报 60 097502Google Scholar

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502Google Scholar

    [5]

    Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P 2015 Chin. J. Chem. Eng. 23 736Google Scholar

    [6]

    Yi Y, Peng Y D, Xia C, Wu L Y, Ke X, Nie J W 2019 J. Magn. Magn. Mater. 476 100Google Scholar

    [7]

    Sunday K J, Darling K A, Hanejko F G, Anasori B, Liu Y C, Taheri M L 2015 J. Alloys Compd. 653 61Google Scholar

    [8]

    Peng Y D, Nie J W, Zhang W J, Ma J, Bao C X, Cao Y 2016 J. Magn. Magn. Mater. 399 88Google Scholar

    [9]

    Zhong X X, Chen J C, Wang L, Li B J, Li L Z 2018 J. Alloys Compd. 735 1603Google Scholar

    [10]

    Fan X A, Wang J, Wu Z Y, Li G Q 2015 Mater. Sci. Eng., B 201 79Google Scholar

    [11]

    Yao Z X, Peng Y D, Xia C, Yi X W, Mao S H, Zhang M T 2020 J. Alloys Compd. 827 154345Google Scholar

    [12]

    Neamtu B V, Geoffroy O, Chicinaş I, Isnard O 2012 Mater. Sci. Eng., B 177 661Google Scholar

    [13]

    Peng Y D, Yi Y, Li L Y, Ai H Y, Wang X X, Chen L L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [14]

    张凯, 王征, 张义, 魏荣飞, 兰中文, 余忠, 傅膑 2018 磁性材料及器件 49 52Google Scholar

    Zhang K, Wang Z, Zhang Y, Wei R F, Lan Z W, Yu Z 2018 J. Magn. Mater. Devices 49 52Google Scholar

    [15]

    Lei J, Zheng J W, Zheng H D, Qiao L, Ying Y, Cai W, Li W C, Yu J, Lin M, Che S L 2019 J. Magn. Magn. Mater. 472 7Google Scholar

    [16]

    Zhang Z Q, Cong L C, Yu Z C, Qu L N, Qian M M, Huang W M 2020 Mater. Adv. 1 54Google Scholar

    [17]

    Tu X, Gallon H J, Whitehead J C 2013 Catal. Today 211 120Google Scholar

    [18]

    冯波, 武鹏, 李永龙 2021 天然气化工 46 66

    Feng B, Wu P, Li Y L 2021 Nat. Gas Chem. Ind. 46 66

    [19]

    Cong L C, Yu Z C, Liu F B, Huang W M 2019 Catal. Sci. Technol. 9 1208Google Scholar

    [20]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [21]

    Ray S K, Dhakal D, Lee S W 2018 Chem. Eng. J. 347 836Google Scholar

    [22]

    Xiang M L, Li D B, Zou J, Li W H, Sun Y H, She X C 2010 J. Nat. Gas Chem. 19 151Google Scholar

    [23]

    Wu K Z, Zhao J J, Zhang X Y, Zhou H W, Wu M X 2019 J. Taiwan Inst. Chem. Eng. 102 212Google Scholar

    [24]

    Liu Y L, Zhang H, Ouyang P, Li Z C 2013 Electrochim. Acta 102 429Google Scholar

    [25]

    Chen X Y, Zhang Z J, Li X X, Shi C W, Li X L 2006 Chem. Phys. Lett. 418 105Google Scholar

    [26]

    严密, 彭晓领 2006 磁学基础与磁性材料(杭州: 浙江大学出版社) 第120页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p120 (in Chinese)

    [27]

    Takahashi S, Harada S, Tamaki S 1989 J. Phys. Soc. Jpn. 58 2075Google Scholar

    [28]

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (2nd Ed.) (Wuhan: Wuhan University of Technology Press) p454 (in Chinese) [张联盟, 黄学辉, 宋晓岚 2008 材料科学基础(第二版) (武汉: 武汉理工大学出版社) 第454页]

    [29]

    Wang Z, Liu X S, Kan X C, Zhu R W, Yang W, Wu Q Y, Zhou S Q 2019 Curr. Appl. Phys. 19 924Google Scholar

    [30]

    Steinmetz C P 1984 Proc. IEEE 72 197Google Scholar

    [31]

    Reinert J, Brockmeyer A, De Doncker R W A A 2001 IEEE Trans. Ind. Appl. 37 1055Google Scholar

    [32]

    Zheng J W, Zheng H D, Lei J, Ying Y, Qiao L, Cai W, Li W C, Yu J, Tang Y P, Che S L 2020 J. Magn. Magn. Mater. 499 166255Google Scholar

    [33]

    Luo F, Fan X A, Luo Z G, Hu W T, Wang J, Wu Z Y, Li G Q, Li Y W, Liu X 2020 J. Magn. Magn. Mater. 498 166084Google Scholar

    [34]

    Li L Y, Chen Q L, Gao Z, Ge Y C, Yi J H 2019 J. Alloys Compd. 805 609Google Scholar

    [35]

    任劲松, 李勃, 王进, 庞新峰, 郭海 2018 电子元件与材料 37 51Google Scholar

    Ren J S, Li B, Wang J, Pang X F, Guo H 2018 Electron. Compon. Mater. 37 51Google Scholar

    [36]

    Guo R D, Wang S M, Yu Z, Sun K, Jiang X N, Wu G H, Wu C J, Lan Z W 2020 J. Alloys Compd. 830 154736Google Scholar

  • 图 1  SEM图 (a) F0; (b) F600; (c) FS0; (d) FS600

    Fig. 1.  SEM images: (a) F0; (b) F600; (c) FS0; (d) FS600.

    图 2  样品FS0的(a) SEM及对应的(b)—(f) EDS元素分布图 (a) SEM; (b) Fe; (c) Ni; (d) Mo; (e) O; (f) Si

    Fig. 2.  (a) SEM image and (b)–(f) corresponding EDS element distribution of sample FS0: (a) SEM; (b) Fe; (c) Ni; (d) Mo; (e) O; (f) Si.

    图 3  样品F0和F600的XPS图 (a)—(d)样品F0的XPS全谱, Fe 2p, Ni 2p和Mo 3d谱; (e)—(h)样品F600的XPS全谱, Fe 2p, Ni 2p和Mo 3d谱

    Fig. 3.  XPS image of sample F0 and F600: (a)–(d) XPS survey spectrum, Fe 2p spectrum, Ni 2p spectrum and Mo 3d spectrum of sample F0; (e)–(h) XPS survey spectrum, Fe 2p spectrum, Ni 2p spectrum and Mo 3d spectrum of sample F600.

    图 4  B = 100 mT条件下, 测得的FeNiMo粉末在H2/Ar混合气体中经过不同处理温度后压制成型的软磁粉芯的磁性能 (a) 有效磁导率; (b) 损耗

    Fig. 4.  Magnetic properties measured at B = 100 mT of soft magnetic powder core that is prepared by the FeNiMo powder treated at different temperatures in H2/Ar mixture: (a) Effective permeability; (b) core loss.

    图 5  B = 100 mT条件下, 测得的样品FS0和FS600在不同温度下退火后的磁性能 (a) 样品FS0的有效磁导率; (b) 样品FS0的损耗; (c) 样品FS600的有效磁导率; (d) 样品FS600的损耗. 图(c)中的插图为800 ℃烧结后复合粉芯截面的SEM图

    Fig. 5.  Magnetic properties measured at B = 100 mT of samples FS0 and FS600 annealed at different temperatures: (a) Effective permeability of sample FS0; (b) core loss of sample FS0; (c) effective permeability of sample FS600; (d) core loss of sample FS600. The inset in panel (c) is the cross-section SEM image of the sample FS600 sintered at 800 ℃.

    图 6  样品F600, FS0和FS600的有效磁导率和损耗对比图

    Fig. 6.  Comparison diagram of effective permeability and core loss of samples F600, FS0 and FS600.

    图 7  样品FS600在不同磁感应强度下的损耗

    Fig. 7.  Core loss of sample FS600 under different magnetic fields.

    图 8  不同SMCs高频稳定性的对比

    Fig. 8.  Comparison of high frequency stability of different SMCs.

    表 1  不同SMCs软磁性能的对比

    Table 1.  Comparison of the magnetic properties of different SMCs.

    SMCs50 kHz100 kHzB /
    mT
    Ref.
    μeffPs /
    (kW·m–3)
    μeffPs /
    (kW·m–3)
    FeNiMo/
    SiO2
    46.818.9746.755.5220This work
    217.3773.750
    10263905100
    FeNiMo/
    Al2O3
    87.6321.78100[11]
    FeNiMo/
    resin
    30~6180100[12]
    Fe/Al2O388.1310.6520[8]
    Fe/NiZn43.594.8343.14199.320[13]
    FeSiCr/
    SiO2
    3631150[14]
    Fe/Al2O3~35400—50020[15]
    下载: 导出CSV

    表 A1  根据测试结果拟合所得的数值

    Table A1.  Values fitted according to the test results.

    Fixed conditionConstant
    Cmαβ
    B = 20 mT0.027021.560192.44999
    B = 50 mT0.013101.962412.26657
    B = 100 mT0.024831.914922.18883
    f = 20 kHz0.030421.343802.36837
    f = 50 kHz0.101701.638302.36837
    f = 100 kHz0.030171.303232.83566
    下载: 导出CSV
  • [1]

    Xie D Z, Lin K H, Lin S T 2014 J. Magn. Magn. Mater. 353 34Google Scholar

    [2]

    Ustinovshikov Y, Shabanova I 2013 J. Alloys Compd. 578 292Google Scholar

    [3]

    Füzer J, Kollár P, Olekšáková D, Roth S 2009 J. Alloys Compd. 483 557Google Scholar

    [4]

    丁燕红, 李明吉, 杨保和, 马叙 2011 物理学报 60 097502Google Scholar

    Ding Y H, Li M J, Yang B H, Ma X 2011 Acta Phys. Sin. 60 097502Google Scholar

    [5]

    Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P 2015 Chin. J. Chem. Eng. 23 736Google Scholar

    [6]

    Yi Y, Peng Y D, Xia C, Wu L Y, Ke X, Nie J W 2019 J. Magn. Magn. Mater. 476 100Google Scholar

    [7]

    Sunday K J, Darling K A, Hanejko F G, Anasori B, Liu Y C, Taheri M L 2015 J. Alloys Compd. 653 61Google Scholar

    [8]

    Peng Y D, Nie J W, Zhang W J, Ma J, Bao C X, Cao Y 2016 J. Magn. Magn. Mater. 399 88Google Scholar

    [9]

    Zhong X X, Chen J C, Wang L, Li B J, Li L Z 2018 J. Alloys Compd. 735 1603Google Scholar

    [10]

    Fan X A, Wang J, Wu Z Y, Li G Q 2015 Mater. Sci. Eng., B 201 79Google Scholar

    [11]

    Yao Z X, Peng Y D, Xia C, Yi X W, Mao S H, Zhang M T 2020 J. Alloys Compd. 827 154345Google Scholar

    [12]

    Neamtu B V, Geoffroy O, Chicinaş I, Isnard O 2012 Mater. Sci. Eng., B 177 661Google Scholar

    [13]

    Peng Y D, Yi Y, Li L Y, Ai H Y, Wang X X, Chen L L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [14]

    张凯, 王征, 张义, 魏荣飞, 兰中文, 余忠, 傅膑 2018 磁性材料及器件 49 52Google Scholar

    Zhang K, Wang Z, Zhang Y, Wei R F, Lan Z W, Yu Z 2018 J. Magn. Mater. Devices 49 52Google Scholar

    [15]

    Lei J, Zheng J W, Zheng H D, Qiao L, Ying Y, Cai W, Li W C, Yu J, Lin M, Che S L 2019 J. Magn. Magn. Mater. 472 7Google Scholar

    [16]

    Zhang Z Q, Cong L C, Yu Z C, Qu L N, Qian M M, Huang W M 2020 Mater. Adv. 1 54Google Scholar

    [17]

    Tu X, Gallon H J, Whitehead J C 2013 Catal. Today 211 120Google Scholar

    [18]

    冯波, 武鹏, 李永龙 2021 天然气化工 46 66

    Feng B, Wu P, Li Y L 2021 Nat. Gas Chem. Ind. 46 66

    [19]

    Cong L C, Yu Z C, Liu F B, Huang W M 2019 Catal. Sci. Technol. 9 1208Google Scholar

    [20]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [21]

    Ray S K, Dhakal D, Lee S W 2018 Chem. Eng. J. 347 836Google Scholar

    [22]

    Xiang M L, Li D B, Zou J, Li W H, Sun Y H, She X C 2010 J. Nat. Gas Chem. 19 151Google Scholar

    [23]

    Wu K Z, Zhao J J, Zhang X Y, Zhou H W, Wu M X 2019 J. Taiwan Inst. Chem. Eng. 102 212Google Scholar

    [24]

    Liu Y L, Zhang H, Ouyang P, Li Z C 2013 Electrochim. Acta 102 429Google Scholar

    [25]

    Chen X Y, Zhang Z J, Li X X, Shi C W, Li X L 2006 Chem. Phys. Lett. 418 105Google Scholar

    [26]

    严密, 彭晓领 2006 磁学基础与磁性材料(杭州: 浙江大学出版社) 第120页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p120 (in Chinese)

    [27]

    Takahashi S, Harada S, Tamaki S 1989 J. Phys. Soc. Jpn. 58 2075Google Scholar

    [28]

    Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (2nd Ed.) (Wuhan: Wuhan University of Technology Press) p454 (in Chinese) [张联盟, 黄学辉, 宋晓岚 2008 材料科学基础(第二版) (武汉: 武汉理工大学出版社) 第454页]

    [29]

    Wang Z, Liu X S, Kan X C, Zhu R W, Yang W, Wu Q Y, Zhou S Q 2019 Curr. Appl. Phys. 19 924Google Scholar

    [30]

    Steinmetz C P 1984 Proc. IEEE 72 197Google Scholar

    [31]

    Reinert J, Brockmeyer A, De Doncker R W A A 2001 IEEE Trans. Ind. Appl. 37 1055Google Scholar

    [32]

    Zheng J W, Zheng H D, Lei J, Ying Y, Qiao L, Cai W, Li W C, Yu J, Tang Y P, Che S L 2020 J. Magn. Magn. Mater. 499 166255Google Scholar

    [33]

    Luo F, Fan X A, Luo Z G, Hu W T, Wang J, Wu Z Y, Li G Q, Li Y W, Liu X 2020 J. Magn. Magn. Mater. 498 166084Google Scholar

    [34]

    Li L Y, Chen Q L, Gao Z, Ge Y C, Yi J H 2019 J. Alloys Compd. 805 609Google Scholar

    [35]

    任劲松, 李勃, 王进, 庞新峰, 郭海 2018 电子元件与材料 37 51Google Scholar

    Ren J S, Li B, Wang J, Pang X F, Guo H 2018 Electron. Compon. Mater. 37 51Google Scholar

    [36]

    Guo R D, Wang S M, Yu Z, Sun K, Jiang X N, Wu G H, Wu C J, Lan Z W 2020 J. Alloys Compd. 830 154736Google Scholar

  • [1] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] 李丹, 李国庆. 氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响. 物理学报, 2018, 67(15): 157501. doi: 10.7498/aps.67.20180387
    [3] 胡亚亚, 朱媛媛, 周贝贝, 刘硕, 刘雍, 熊锐, 石兢. R型铁氧体BaFe4-xTi2+xO11的化学组态以及磁性行为的研究. 物理学报, 2015, 64(11): 117501. doi: 10.7498/aps.64.117501
    [4] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [5] 秦杰明, 曹建明, 蒋大勇. Mg0.57Zn0.43O合金薄膜生长及性能表征. 物理学报, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [6] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [7] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [9] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [10] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [11] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [13] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [15] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [16] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [17] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [18] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [19] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  5451
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-05-30
  • 上网日期:  2022-07-22
  • 刊出日期:  2022-08-05

/

返回文章
返回