搜索

x
中国物理学会期刊

795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用

CSTR: 32037.14.aps.71.20212422

795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope

CSTR: 32037.14.aps.71.20212422
PDF
HTML
导出引用
  • 在传统的氧化物约束型的垂直腔面发射半导体激光器中, 横向光限制主要取决于氧化层的厚度及其相对于腔内光驻波分布的位置. 通过减少外延结构中氧化层与光场驻波分布之间的重叠, 可以降低芯层与包层之间的有效折射率差, 从而减少腔内可存在的横向模的数量, 并增加横模向氧化物孔径之外的扩展. 本文利用这一原理设计并制作了一个795 nm的大氧化孔径的垂直腔面发射激光器. 器件在80 ℃下可实现4.1 mW的高功率单基模工作, 最高边模抑制比为41.68 dB, 最高正交偏振抑制比为27.46 dB. 将VCSEL作为抽运源应用于核磁共振陀螺仪系统样机中, 实验结果表面新设计的VCSEL可以满足陀螺系统的初步应用需求.

     

    Single-transverse mode vertical-cavity surface-emitting lasers (VCSELs) are preferable optical sources for small low-power atomic sensors, including chip-scale atomic clocks, magnetometers, and gyroscopes.When VCSEL is used as the pump source of nuclear magnetic resonance gyroscope, it is required to have high single-mode output power. Oxide aperture diameter must be sufficiently small (< 4 µm) in a conventional oxide-confined VCSEL to support the fundamental mode alone. However, high series resistance (typically > 200 Ω for GaAs-based VCSEL) from the small aperture limits its output power and reliability due to excessive current-induced self-heating and high current density. It is a very attractive idea to achieve high power operation of an intrinsic single mode VCSEL based on a large oxide aperture by means of epitaxial structure design without introducing additional process steps. Transverse optical confinement in oxide-confined VCSELs crucially depends on the thickness of oxide layer and its position relative to standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as the difference in effective refractive index between core and cladding of the VCSEL, thereby reducing the number of transverse modes andincreasing the mode extension beyond oxide aperture. A 795-nm VCSEL is designed and fabricated based on this concept. A cavity structure of VCSEL with gain-cavity detuning of ~10.8 nm at room temperature is adopted in this paper. The effective refractive index and the standing wave distribution of the VCSEL are calculated, and the position of the oxide layer in the epitaxial structure of the VCSEL is optimized according to the standing wave distribution. Finally, the structure with low effective refractive index difference is obtained. The proposed device achieves high single-mode operation of 4.1 mW at 80 ℃, SMSR of 41.68 dB, and OPSR of 27.4 dB. The VCSEL is applied to a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance, and satisfactory test results are obtained. This paper presents a new method of designing single-mode high power VCSEL and its feasibility is also demonstrated through experimental results.

     

    目录

    /

    返回文章
    返回