搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电神经形态器件及其应用

沈柳枫 胡令祥 康逢文 叶羽敏 诸葛飞

引用本文:
Citation:

光电神经形态器件及其应用

沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞

Optoelectronic neuromorphic devices and their applications

Shen Liu-Feng, Hu Ling-Xiang, Kang Feng-Wen, Ye Yu-Min, Zhuge Fei
PDF
HTML
导出引用
  • 传统冯·诺依曼计算机在并行性计算和自适应学习方面效率较低, 无法满足当前飞速发展的信息技术对高效、高速计算的迫切需求. 受脑启发的神经形态计算具有高度并行性、超低功耗等优势, 被认为是打破传统计算机局限性, 实现新一代人工智能的理想途径. 神经形态器件是实施神经形态计算的硬件载体, 是构建神经形态芯片的关键. 与此同时, 人类视觉系统与光遗传学的发展为神经形态器件的研究提供了新的思路. 新兴的光电神经形态器件结合了光子学与电子学各自的优势, 在神经形态计算领域展露出巨大潜力, 受到了国内外研究人员广泛关注. 本文对光电神经形态器件及其应用的最新研究进行了总结. 首先综述了人工光电突触与人工光电神经元, 内容包括器件结构、工作机制以及神经形态功能模拟等方面. 然后, 对光电神经形态器件在人工视觉系统、人工感知系统、神经形态计算等领域中的潜在应用作了阐述. 最后, 总结了当前光电神经形态器件所面临的挑战, 并对其未来的发展方向进行了展望.
    Conventional computers based on the von Neumann architecture are inefficient in parallel computing and self-adaptive learning, and therefore cannot meet the rapid development of information technology that needs efficient and high-speed computing. Owing to the unique advantages such as high parallelism and ultralow power consumption, bioinspired neuromorphic computing can have the capability of breaking through the bottlenecks of conventional computers and is now considered as an ideal option to realize the next-generation artificial intelligence. As the hardware carriers that allow the implementing of neuromorphic computing, neuromorphic devices are very critical in building neuromorphic chips. Meanwhile, the development of human visual systems and optogenetics also provides a new insight into how to study neuromorphic devices. The emerging optoelectronic neuromorphic devices feature the unique advantages of photonics and electronics, showing great potential in the neuromorphic computing field and attracting more and more attention of the scientists. In view of these, the main purpose of this review is to disclose the recent research advances in optoelectronic neuromorphic devices and the prospects of their practical applications. We first review the artificial optoelectronic synapses and neurons, including device structural features, working mechanisms, and neuromorphic simulation functions. Then, we introduce the applications of optoelectronic neuromorphic devices particularly suitable for the fields including artificial vision systems, artificial perception systems, and neuromorphic computing. Finally, we summarize the challenges to the optoelectronic neuromorphic devices, which we are facing now, and present some perspectives about their development directions in the future.
      通信作者: 诸葛飞, zhugefei@nimte.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U20A20209, 61874125)、中国科学院战略性先导专项(批准号: XDB32050204)、浙江省自然科学基金(批准号: LD19E020001, LQ22F040003)和宁波市自然科学基金(批准号: 2021J139)资助的课题.
      Corresponding author: Zhuge Fei, zhugefei@nimte.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U20A20209, 61874125), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32050204), the Natural Science Foundation of Zhejiang Pvovince, China (Grant Nos. LD19E020001, LQ22F040003), and the Ningbo Natural Science Foundation, China (Grant No. 2021J139).
    [1]

    Turing A M 1937 Proc. London Math. Soc. 42 230Google Scholar

    [2]

    Von Neuman J 1993 IEEE Ann. Hist. Comput. 15 27Google Scholar

    [3]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [4]

    Attwell D, Laughlin S B 2001 Cereb. Blood Flow Metab. 21 1133Google Scholar

    [5]

    Chen Z, Ríos C, Pernice W H P, Wrigh C D, Bhaskara H 2017 Sci. Adv. 3 e1700160Google Scholar

    [6]

    Drachman D A 2005 Neurology 64 2004Google Scholar

    [7]

    Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis T 2013 Nanotechnology 24 384010Google Scholar

    [8]

    Indiveri G, Liu S C 2015 Proc. IEEE 103 1379Google Scholar

    [9]

    Mead C 1990 Proc. IEEE 78 1629Google Scholar

    [10]

    Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668Google Scholar

    [11]

    Shen J C, Ma D, Gu Z H, Zhang M, Zhu X L, Xu X Q, Xu Q, Shen Y J, Pan G 2016 Sci. China Inf. Sci. 59 023401Google Scholar

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [13]

    Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K, Strukov D B 2015 Nature 521 61Google Scholar

    [14]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [15]

    Han W, Tellez L A, Rangel M Jr, Motta S C, Zhang X, Perez I O, Canteras N S, Shammah-Lagnado S J, van den Pol A N, de Araujo I E 2017 Cell 168 311Google Scholar

    [16]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106Google Scholar

    [17]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [18]

    韩济生 2009 神经科学 (北京大学医学出版社) 第139—145页

    Han J S 2009 Neuroscience (Beijing: Peking University Medical Press) pp139–145 (in Chinese)

    [19]

    Yonezu H, Miho A, Himeno T, Pak K, Takano Y 1989 Electron. Lett. 25 670Google Scholar

    [20]

    Krishnamoorthy A V, Yayla G, Esener S C 1992 IEEE T. Neural Networ. 3 404Google Scholar

    [21]

    Wen Z, Frahat N H, Lin S Y 1994 Opt. Lett. 19 1394Google Scholar

    [22]

    Shainline J M, Buckley S M, McCaughan A N, Chiles J, Jafari-Salim A, Mirin R P, Nam S W 2018 J. Appl. Phys. 124 152130Google Scholar

    [23]

    Han J K, Geum D M, Lee M W, Yu J M, Kim S K, Kim S, Choi Y K 2020 Nano Lett. 20 8781Google Scholar

    [24]

    Bliss T V P, Collingridge G L 1993 Nature 361 31Google Scholar

    [25]

    Zhuge X, Wang J R, Zhuge F 2019 Phys. Status Solidi-R 13 1900082Google Scholar

    [26]

    Agnus G, Zhao W, Derycke V, Filoramo A, Lhuillier Y, Lenfant S, Vuillaume D, Gamrat C, Bourgoin J P 2010 Adv. Mater. 22 702Google Scholar

    [27]

    Hu D C, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463Google Scholar

    [28]

    Zhu X, Lu W D 2018 ACS Nano 12 1242Google Scholar

    [29]

    Ham S, Choi S, Cho H, Na S I, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [30]

    Hu L X, Yang J, Wang J R, Cheng P H, Chua L O, Zhuge F 2020 Adv. Funct. Mater. 31 2005582Google Scholar

    [31]

    Wang Y, Yang J, Ye W B, She D H, Chen J R, Lv Z Y, Roy V A L, Li H L, Zhou K, Yang Q, Zhou Y, Han S T 2019 Adv. Electron. Mater. 6 1900765Google Scholar

    [32]

    Pradhan B, Das S, Li J, Chowdhury F, Cherusseri J, Pandey D, Dev D, Krishnaprasad A, Barrios E, Towers A, Gesquiere A, Tetard L, Roy T, Thomas J 2020 Sci. Adv. 6 eaay5225Google Scholar

    [33]

    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S A, Mayes E L H, Kuriakose S, Nawaz S, Spencer M J S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 e2004207Google Scholar

    [34]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2021 ACS Nano 15 1497Google Scholar

    [35]

    Feldmann J, Youngblood N, Wright C D, Bhaskaran H, Pernice W H P 2019 Nature 569 208Google Scholar

    [36]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020 ACS Nano 14 746Google Scholar

    [37]

    Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2021 Adv. Funct. Mater. 32 2108014Google Scholar

    [38]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018 Cogn. Neurodyn. 12 615Google Scholar

    [39]

    Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J, Chen Y H, Zhang H, Sun Q J, Wang Z L 2021 Sci. Adv. 7 eabd9117Google Scholar

    [40]

    Psaltis D, Lin S 1991 Proc. SPIE 1562 204Google Scholar

    [41]

    Wu Q T, Dang B J, Lu C Y, Xu G W, Yang G H, Wang J W, Chuai X C, Lu N D, Geng D, Wang H, Li L 2020 Nano Lett. 20 8015Google Scholar

    [42]

    Tan H W, Zhou Y F, Tao Q Z, Rosen J, van Dijken S 2021 Nat. Commun. 12 1120Google Scholar

    [43]

    Tsai M Y, Lee K C, Lin C Y, Chang Y M, Watanabe K, Taniguchi T, Ho C H, Lien C H, Chiu P W, Lin Y F 2021 Adv. Funct. Mater. 31 2105345Google Scholar

    [44]

    尼克尔斯 J G, 马丁 A R, 福克斯 P A, 布朗 D A, 戴蒙特 M E, 韦斯勃拉脱 D A 著 (杨雄里 译) 2014 从神经元到脑: 第5版 (北京: 科学出版社) 第10页

    Nicholls J G, Martin A R, Fuchs P A, Brown D A, Diamond M E, Weisblat D A (translated by Yang X L) 2014 From Neuron to Brain, Fifth Edition (Beijing: Science Press) p10 (in Chinese)

    [45]

    Kandel E R, Squire L R 2000 Science 290 1113Google Scholar

    [46]

    Bi G, Poo M 1998 J. Neurosic. 18 10464Google Scholar

    [47]

    Lee G, Baek J H, Ren F, Pearton S J, Lee G H, Kim J 2021 Small 17 e2100640Google Scholar

    [48]

    Fioravante D, Regehr W G 2011 Curr. Opin. Neurobiol. 21 269Google Scholar

    [49]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [50]

    Hennig M H 2013 Front Comput. Neurosci. 7 154Google Scholar

    [51]

    Montgomery J M, Madison D V 2004 Trends Neurosci. 27 744Google Scholar

    [52]

    Rachmuth G, Shouval H Z, Bear M F, Poon C S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1266Google Scholar

    [53]

    Zhao Y H, Liu B, Yang J L, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [54]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [55]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [56]

    Kumar M, Abbas S, Kim J 2018 ACS Appl. Mater. Interfaces 10 34370Google Scholar

    [57]

    Kumar M, Ban D K, Kim S M, Kim J, Wong C P 2019 Adv. Electron. Mater. 5 1900467Google Scholar

    [58]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021 Adv. Funct. Mater. 31 2101201Google Scholar

    [59]

    Zhao X N, Wang Z Q, Li W T, Sun S W, Xu H Y, Zhou P, Xu J Q, Lin Y, Liu Y C 2020 Adv. Funct. Mater. 30 1910151Google Scholar

    [60]

    Wang Y, Yang J, Wang Z P, Chen J R, Yang Q, Lv Z Y, Zhou Y, Zhai Y B, Li Z X, Han S T 2019 Small 15 e1805431Google Scholar

    [61]

    Zhou Y, Yew K S, Ang D S, Kawashima T, Bera M K, Zhang H Z, Bersuker G 2015 Appl. Phys. Lett. 107 072107Google Scholar

    [62]

    Zhou Y, Liu D N, Wang J H, Cheng Z Q, Liu L, Yang N, Liu Y X, Xia T, Liu X Y, Zhang X, Ye C, Xu Z, Xiong W, Chu P K, Yu X F 2020 ACS Appl. Mater. Interfaces 12 25108Google Scholar

    [63]

    Maier P, Hartmann F, Rebello Sousa Dias M, Emmerling M, Schneider C, Castelano L K, Kamp M, Marques G E, Lopez-Richard V, Worschech L, Höfling S 2016 Appl. Phys. Lett. 109 023501Google Scholar

    [64]

    ShanX Y, Zhao C Y, Wang X N, Wang Z Q, Fu S C, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 9 2104632Google Scholar

    [65]

    Li H L, Jiang X T, Ye W B, Zhang H, Zhou L, Zhang F, She D H, Zhou Y, Han S T 2019 Nano Energy 65 104000Google Scholar

    [66]

    Diorio C, Hasler P, Minch A, Mead C A 1996 IEEE Trans. Electron Devices 43 1972Google Scholar

    [67]

    Zhu L Q, Xiao H, Liu Y H, Wan C J, Shi Y, Wan Q 2015 Appl. Phys. Lett. 107 143502Google Scholar

    [68]

    Zhai Y B, Zhou Y, Yang X Q, Wang F, Ye W B, Zhu X J, She D H, Lu W D, Han S T 2020 Nano Energy 67 104262Google Scholar

    [69]

    Qian C, Oh S, Choi Y, Kim J H, Sun J, Huang H, Yang J, Gao Y, Park J H, Cho J H 2019 Nano Energy 66 104095Google Scholar

    [70]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [71]

    Yin L, Han C, Zhang Q T, Ni Z Y, Zhao S Y, Wang K, Li D S, Xu M S, Wu H Q, Pi X D, Yang D R 2019 Nano Energy 63 103859Google Scholar

    [72]

    Wang J X, Chen Y, Kong L A, Fu Y, Gao Y L, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [73]

    Yang C M, Chen T C, Verma D, Li L J, Liu B, Chang W H, Lai C S 2020 Adv. Funct. Mater. 30 2001598Google Scholar

    [74]

    Yang X Y, Xiong Z Y, Chen Y J, Ren Y, Zhou L, Li H L, Zhou Y, Pan F, Han S T 2020 Nano Energy 78 105246Google Scholar

    [75]

    Mcculloch W S, Pitts W 1990 Bull. Math. Biol. 52 99Google Scholar

    [76]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25Google Scholar

    [77]

    Shainline J M, Buckley S M, Mirin R P, Nam S W 2017 Phys. Rev. Applied 7 034013Google Scholar

    [78]

    Kumar M, Kim H S, Kim J 2019 Adv. Mater. 31 e1900021Google Scholar

    [79]

    Chen S, Lou Z, Chen D, Shen G Z 2018 Adv. Mater. 30 1705400Google Scholar

    [80]

    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H, Park S K 2019 Adv. Mater. 31 e1906433Google Scholar

    [81]

    Chen Q L, Zhang Y, Liu S Z, Han T T, Chen X H, Xu Y Q, Meng Z Q, Zhang G L, Zheng X J, Zhao J J, Cao G Z, Liu G 2020 Adv. Intell. Syst. 2 2000122Google Scholar

    [82]

    Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H, Kim S 2020 ACS Nano 14 9796Google Scholar

    [83]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [84]

    Qiu W J, Huang Y L, Kong L A, Chen Y, Liu W R, Wang Z, Sun J, Wan Q, Cho J H, Yang J L, Gao Y L 2020 Adv. Funct. Mater. 30 2002325Google Scholar

    [85]

    Wu L D, Wang Z W, Wang B W, Chen Q Y, Bao L, Yu Z Z, Yang Y F, Ling Y T, Qin Y B, Tang K C, Cai Y M, Huang R 2021 Nanoscale 13 3483Google Scholar

    [86]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [87]

    Jang H, Liu C Y, Hinton H, Lee M H, Kim H, Seol M, Shin H J, Park S, Ham D 2020 Adv. Mater. 32 e2002431Google Scholar

    [88]

    Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O A, Rosen J, van Dijken S 2020 Nat. Commun. 11 1369Google Scholar

    [89]

    Kim S, Roe D G, Choi Y Y, Woo H, Park J, Lee J I, Choi Y, Jo S B, Kang M S, Song Y J, Jeong S, Cho J H 2021 Sci. Adv. 7 eabe3996Google Scholar

    [90]

    Karbalaei Akbari M, Zhuiykov S 2019 Nat. Commun. 10 3873Google Scholar

    [91]

    Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L, Kim T W, Chai Y, Li F S 2021 Nano Lett. 21 6087Google Scholar

    [92]

    Wan C J, Cai P Q, Guo X T, Wang M, Matsuhisa N, Yang L, Lv Z S, Luo Y F, Loh X J, Chen X D 2020 Nat. Commun. 11 4602Google Scholar

    [93]

    Yang X, Fang Y C, Yu Z Z, Wang Z W, Zhang T, Yin M H, Lin M, Yang Y C, Cai Y M, Huang R 2016 Nanoscale 8 18897Google Scholar

    [94]

    Rankin C H, Abrams T, Barry R J, Bhatnagar S, Clayton D F, Colombo J, Coppola G, Geyer M A, Glanzman D L, Marsland S, McSweeney F K, Wilson D A, Wu C F, Thompson R F 2009 Neurobiol. Learn. Mem. 92 135Google Scholar

    [95]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 15 1800079Google Scholar

    [96]

    Zhao B, Xiao M, Shen D Z, Zhou Y N 2020 Nanotechnology 31 125201Google Scholar

    [97]

    Gong G D, Gao S, Xie Z L, Ye X Y, Lu Y, Yang H L, Zhu X J, Li R W 2021 Nanoscale 13 1029Google Scholar

    [98]

    Akbari M K, Hu J, Verpoort F, Lu H L, Zhuiykov S 2020 Nano-Micro Lett. 12 83Google Scholar

    [99]

    Zhou L, Zhang S R, Yang J Q, Miao J Y, Ren Y, Shan H Q, Xu Z X, Zhou Y, Han S T 2020 Nanoscale 12 1484Google Scholar

    [100]

    Hawkins R D, Byrne J H 2015 Cold Spring Harb. Perspect. Biol. 7 a021709Google Scholar

    [101]

    Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797Google Scholar

    [102]

    Ahmed T, Kuriakose S, Mayes E L H, Ramanathan R, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Small 15 e1900966Google Scholar

    [103]

    Feldman D E 2012 Neuron 75 556Google Scholar

    [104]

    Abbott L F, Nelson S B 2000 Nat. Neurosci. 3 1178Google Scholar

    [105]

    Caporale N, Dan Y 2008 Annu. Rev. Neurosci. 31 25Google Scholar

    [106]

    Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M, Miao X S 2014 Sci. Rep. 4 4906Google Scholar

  • 图 1  光电神经形态器件的研究进展概述[16,23,29,33,39-43]

    Fig. 1.  Overview of advances in optoelectronic neuromorphic devices [16,23,29,33,39-43].

    图 2  (a) 生物神经元和突触结构示意图; (b) 生物神经元随不同神经递质信号产生的膜电位变化, 其中, 黑线、红线和蓝线分别表示神经元动作电位、兴奋性突触后电位和抑制性突触后电位[47]

    Fig. 2.  (a) Schematic illustration of the structure of biological neurons and synapses; (b) membrane potential of biological neurons with different neurotransmitter signals, where the black, red and blue curves denote the neuronal action potential, excitatory post-synaptic potential, and inhibitory post-synaptic potential respectively[47].

    图 3  基于忆阻器实现的光电协同型突触器件 (a) 基于ITO/ZnO1–x/AlOy/Al的忆阻器件结构示意图, 插图为器件横截面的透射电子显微镜 (TEM) 图像[27]; (b) EPSC随刺激脉冲发生的光增强与电抑制过程[27]; (c) 基于MAPbI3的平面型忆阻器结构示意图; (d) 光照抑制碘空位形成和加速碘空位湮灭的过程[28]; (e) 基于MAPbI3的平面型忆阻器在黑暗与光照条件 (可见光, 1.29 μW/cm2) 下的LTP与LTD行为[28]; (f) 基于MAPbI3的垂直型忆阻器结构示意图[29]; (g) 基于MAPbI3的垂直型忆阻器在光照下内部工作机制示意图[29]; (h) 基于MAPbI3的垂直型忆阻器在光照与黑暗条件下的电增强与电抑制过程[29]; (i) 基于InAs量子点的光电忆阻器结构示意图[63]; (j) 基于InAs量子点的光电忆阻器电导在电压辅助下的光增强与光抑制过程[63]

    Fig. 3.  Optoelectronic cooperative synaptic devices based on memristor: (a) Structural illustration of memristive device based on ITO/ZnO1–x/AlOy/Al, and the corresponding transmission electron microscope (TEM) image [27]; (b) photonic potentiation and electrical depression of stimulated pulses-dependent EPSC[27]; (c) structural illustration of planar memristor based on MAPbI3[28]; (d) schematic illustration for illustrating how the light inhibits the formation (upper) and accelerates the annihilation (down) of iodine-related vacancies[28]; (e) LTP and LTD behaviors of planar memristor based on MAPbI3 under dark condition and upon illumination with a visible light at a power output of 1.29 μW/cm2, respectively[28]; (f) structural illustration of MAPbI3-based vertical memristor[29]; (g) schematic illustration of the working mechanism of MAPbI3-based vertical memristor under light illumination[29]; (h) dependence of electrical potentiation and depression of MAPbI3-based vertical memristor on electrical pulses under dark and light illumination conditions[29]; (i) structural illustration of InAs quantum dots (QDs)-based optoelectronic memristor[63]; (j) photonic potentiation and depression of the conductance of InAs QDs-based optoelectronic memristor with the assistance of voltage[63].

    图 4  基于忆阻器实现的全光型突触器件 (a) 基于IGZO全光控忆阻器的工作模式[30]; (b) 基于IGZO全光控忆阻器电导可逆调控特性及循环稳定性[30]; (c) 基于IGZO全光控忆阻器的电导态保持特性, 分别通过光SET和光RESET获得[30]; (d) 基于Ag-TiO2纳米复合材料的忆阻器在可见光刺激下产生的LTP行为[64]; (e) 基于Ag-TiO2纳米复合材料的忆阻器在紫外光刺激下产生的LTD行为[64]

    Fig. 4.  All-optical synaptic devices based on memristor: (a) Working mode of all-optically controlled memristor based on IGZO[30]; (b) reversible regulation characteristics of conductance (upper) and cycle stability (down) [30]; (c) retention characteristics of memconductance states after optical SET (upper) and optical RESET (down) operations[30]; visible light-induced LTP (d) and UV light-induced LTD (e) of the Ag-TiO2 nanocomposite-based memristor[64].

    图 5  光电协同型突触晶体管 (a) 基于MoSe2/Bi2Se3光电晶体管的器件结构[31]; (b) 在0.15 mW/cm2 (i) 和1.65 mW/cm2 (ii) 功率密度的光脉冲刺激下突触后电流的变化[31]; (c) 基于MoSe2/Bi2Se3光电晶体管电导的光增强与电抑制过程[31]; (d) 基于Gr-PQDs的光电晶体管在黑暗与光照(440 nm)条件下的输出特性曲线, 插图为光电晶体管的示意图[32]; (e) 基于Gr-PQDs光电晶体管在光激发 (i) 与光栅效应 (ii) 下的能级图, 其中VB和CB分别表示价带与导带[32]; (f) 基于Gr-PQDs光电晶体管在光电协同作用下的LTP与LTD行为[32]

    Fig. 5.  Optoelectronic cooperative synaptic transistors: (a) Schematic illustration of the structure of MoSe2/Bi2Se3-based phototransistor[31]; (b) dependence of the change of post-synaptic current on the time after continuously stimulating with the photonic pulses at the light intensity of 0.15 mW/cm2 (i) and 1.65 mW/cm2 (ii) [31]; (c) photonic potentiation and electrical depression of the conductance of MoSe2/Bi2Se3-based phototransistor[31]; (d) output characteristic curve of the Gr-PQDs-based phototransistor under dark condition and 440 nm light illustration, where the phototransistor structure, as seen in the inset, is also given here[32]; (e) schematic illustration of the energy band diagram for Gr-PQDs-based phototransistor under consideration of photoexcitation (i) and photogating effect (ii), where the VB and CB denote valence band and conduction band, respectively[32]; (f) LTP and LTD behaviors of Gr-PQDs-based phototransistor under optoelectronic cooperation[32].

    图 6  全光型突触晶体管 (a) BP基光电晶体管结构示意图[33]; (b), (c) BP基光电晶体管在280 nm与365 nm波长光脉冲刺激下的光电响应[33]; (d) BP基光电晶体管LTP与LTD突触行为模拟[33]; (e) Pyr-GDY/Gr/PbS-QD基光电晶体管结构示意图[34]; (f) Pyr-GDY/Gr/PbS-QD基光电晶体管在450 nm与980 nm波长光照射下的能带图[34]; (g) Pyr-GDY/Gr/PbS-QD基光电晶体管LTP与LTD突触行为模拟[34]

    Fig. 6.  All-optically controlled synaptic transistors: (a) Schematic illustration of the structure of fully light-controlled optoelectronic transistor based on BP[33]; (b), (c) optoelectronic response of BP-based optoelectronic transistor upon stimulation with 280 nm (b) and 365 nm (c) light pulses[33]; (d) LTP and LTD behaviors of BP-based optoelectronic transistor upon stimulation with 280 nm and 365 nm light pulses[33]; (e) schematic illustration of the structure of Pyr-GDY/Gr/PbS-QDs-based optoelectronic transistor[34]; (f) mechanistic illustration for the bandgap change of Pyr-GDY/Gr/PbS-QD-based optoelectronic transistor upon illumination with the light wavelengths of 450 nm (left) and 980 nm (right) [34]; (g) LTP and LTD behaviors of the Pyr-GDY/Gr/PbS-QD-based optoelectronic transistor[34].

    图 7  (a) Bi2O2Se/Gr基突触结构图[72]; (b) Bi2O2Se/Gr基突触在红光 (i) 和紫外光 (ii) 照射下的能带图[72]; (c) Bi2O2Se/Gr基突触在红光和紫外光照射下的突触后电流[72]; (d) Bi2O2Se/Gr基突触在同样的红光和紫光光脉冲下实现突触LTP与LTD行为模拟[72]; (e) Gr/MoS2基突触结构图, 其中插图为光电晶体管的扫描电子显微镜 (SEM) 图像[39]; (f) Gr/MoS2基突触与TENG分离状态 (i) 与接触状态 (ii) 的工作原理及相应的能带图[39]; (g) VTENG随位移变化曲线, 其中插图为VTENG输出的等效电路图[39]; (h) Gr/MoS2基的突触在光脉冲与TENG位移脉冲共同作用下实现的电流增加与降低过程[39]

    Fig. 7.  (a) Structural illustration of synaptic device based on Bi2O2Se/Gr heterojunction[72]; (b) mechanism illustration for the bandgap change of this Bi2O2Se/Gr-based synaptic device upon illumination with red (i) and UV light (ii), along with the corresponding post-synaptic current (c) as well as LTP and LTD behaviors (d) stimulated by the same red and UV light [72]; (e) schematic illustration of the structure of artificial synapse based on Gr/MoS2 heterostructure and the scanning electron microscope (SEM) image of a phototransistor (inset) [39]; (f) working mechanistic principle and the corresponding bandgap illustration for this artificial synapse based on Gr/MoS2 heterostructure at (i) separation state and (ii) contact state with TENG[39]; (g) dependence of the variation of VTENG value on the displacement, together with the equivalent circuit illustration for VTENG output (inset) [39]; (h) current depression and potentiation of the artificial synapse based on Gr/MoS2 heterojunction[39].

    图 8  基于砷化镓的光电神经元结构图[40]

    Fig. 8.  Schematic illustration of the structure of photoelectric neuron based on GaAs[40].

    图 9  光电神经元器件 (a) 硅基光电神经元的TEM图[23]; (b) 神经元器件在加光与撤光条件下的光电响应[23]; (c) 神经元器件在不同功率光照射下的光电响应[23]; (d) 基于 IGZO4紫外传感器和NbOx振荡器的人工视觉神经元结构示意图[41]; (e) 人工视觉神经元在不同光照下的工作模式示意图[41]; (f) 人工视觉神经元在黑暗和不同波长紫外光照射件下的4种发射行为[41]

    Fig. 9.  Optoelectronic neuron devices: (a) TEM image of silicon-based optoelectronic neuron[23]; (b) optoelectronic response of neuron under light ON and light OFF[23]; (c) optoelectronic response of neuron upon stimulation with different light intensity[23]; (d) structural illustration for artificial visual neuron composed of IGZO4-based UV sensor and NbOx-based oscillator[41]; (e) working mode of artificial visual neuron under different light illumination[41]; (f) four different firing behaviors of artificial visual neuron in dark and upon stimulation with different wavelength UV light[41].

    图 10  光电神经形态器件在人工视觉系统中的应用 (a) 由In2O3基图像传感器与Al2O3基阻变存储器构建的人工视觉系统[79]; (b) 具有明适应与暗适应功能的人工视觉系统[80]; (c) 具有颜色识别功能的h-BN/WSe2基光电突触器件[16]; (d) MoOx 基ORRAM结构示意图, 其中插图为器件横截面的SEM图[83]; (e) 基于ORRAM阵列构建的人工视觉系统[83]; (f) 基于二维WSe2的光电二极管结构示意图[17]; (g) 基于WSe2光电二极管实现的分类器与自编码器应用[17]

    Fig. 10.  Optoelectronic neuromorphic devices for artificial vision system: (a) Artificial vision system integrated by image sensor based on In2O3 and resistive random access memory based on Al2O3[79]; (b) artificial visual system having the functions of light and dark adaptation[80]; (c) h-BN/WSe2 heterojunction-based optoelectronic synaptic device with the function of color recognition[16]; (d) schematic illustration for ORRAM structure based on Pd/MoOx/ITO, in which the inset shows the SEM image of the cross section of the device[83]; (e) artificial vision system constructed by ORRAM array[83]; (f) schematic illustration of photodiode based on two-dimensional (2 D) WSe2 materials[17]; (g) applications of 2D WSe2-based photodiode for classifier and autoencoder[17].

    图 11  光电神经形态器件在人工感知系统中的应用 (a) 由压力传感器与光电突触组成的人工神经系统[88]; (b) 由光电二极管、突触晶体管以及机械臂组成的控制系统[89]

    Fig. 11.  Optoelectronic neuromorphic devices for artificial sensing system: (a) Artificial system composed of pressure sensors and optoelectronic synapses[88]; (b) control system composed of photodiodes, synaptic transistors and robotic arms[89].

    图 12  光电神经形态器件在非联想学习中的应用 (a) MoS2基光电忆阻器模拟习惯化与敏化行为[95]; (b) ZnO基光电器件模拟敏化行为[78]

    Fig. 12.  Nonassociative learning based on optoelectronic neuromorphic devices: (a) Simulation of habituation and sensitization behaviors using the MoS2-based optoelectronic memristor[95]; (b) simulation of sensitization behavior using the ZnO-based optoelectronic device[78].

    图 13  光电神经形态器件在联想学习模拟中的应用 (a) 光电协同刺激实现的巴普洛夫实验[101]; (b) 全光刺激实现的巴普洛夫实验[102]

    Fig. 13.  Associative learning based on optoelectronic neuromorphic devices. Paplov's experiment realized by optoelectronic co-stimulation[101] (a) and by all-optical stimulation[102] (b).

    图 14  光电神经形态器件在STDP学习规则模拟中的应用 (a) 基于ReSe2/h-BN/Gr光电晶体管实现的四种STDP学习规则[43]; (b) 基于全光控忆阻器实现的STDP学习规则[30]

    Fig. 14.  STDP learning rules based on optoelectronic neuromorphic devices: (a) Four STDP learning rules based on ReSe2/h-BN/Gr phototransistors[43]; (b) STDP learning rules based on all-optically controlled memristor[30].

  • [1]

    Turing A M 1937 Proc. London Math. Soc. 42 230Google Scholar

    [2]

    Von Neuman J 1993 IEEE Ann. Hist. Comput. 15 27Google Scholar

    [3]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [4]

    Attwell D, Laughlin S B 2001 Cereb. Blood Flow Metab. 21 1133Google Scholar

    [5]

    Chen Z, Ríos C, Pernice W H P, Wrigh C D, Bhaskara H 2017 Sci. Adv. 3 e1700160Google Scholar

    [6]

    Drachman D A 2005 Neurology 64 2004Google Scholar

    [7]

    Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis T 2013 Nanotechnology 24 384010Google Scholar

    [8]

    Indiveri G, Liu S C 2015 Proc. IEEE 103 1379Google Scholar

    [9]

    Mead C 1990 Proc. IEEE 78 1629Google Scholar

    [10]

    Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668Google Scholar

    [11]

    Shen J C, Ma D, Gu Z H, Zhang M, Zhu X L, Xu X Q, Xu Q, Shen Y J, Pan G 2016 Sci. China Inf. Sci. 59 023401Google Scholar

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [13]

    Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K, Strukov D B 2015 Nature 521 61Google Scholar

    [14]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [15]

    Han W, Tellez L A, Rangel M Jr, Motta S C, Zhang X, Perez I O, Canteras N S, Shammah-Lagnado S J, van den Pol A N, de Araujo I E 2017 Cell 168 311Google Scholar

    [16]

    Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P, Park J H 2018 Nat. Commun. 9 5106Google Scholar

    [17]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [18]

    韩济生 2009 神经科学 (北京大学医学出版社) 第139—145页

    Han J S 2009 Neuroscience (Beijing: Peking University Medical Press) pp139–145 (in Chinese)

    [19]

    Yonezu H, Miho A, Himeno T, Pak K, Takano Y 1989 Electron. Lett. 25 670Google Scholar

    [20]

    Krishnamoorthy A V, Yayla G, Esener S C 1992 IEEE T. Neural Networ. 3 404Google Scholar

    [21]

    Wen Z, Frahat N H, Lin S Y 1994 Opt. Lett. 19 1394Google Scholar

    [22]

    Shainline J M, Buckley S M, McCaughan A N, Chiles J, Jafari-Salim A, Mirin R P, Nam S W 2018 J. Appl. Phys. 124 152130Google Scholar

    [23]

    Han J K, Geum D M, Lee M W, Yu J M, Kim S K, Kim S, Choi Y K 2020 Nano Lett. 20 8781Google Scholar

    [24]

    Bliss T V P, Collingridge G L 1993 Nature 361 31Google Scholar

    [25]

    Zhuge X, Wang J R, Zhuge F 2019 Phys. Status Solidi-R 13 1900082Google Scholar

    [26]

    Agnus G, Zhao W, Derycke V, Filoramo A, Lhuillier Y, Lenfant S, Vuillaume D, Gamrat C, Bourgoin J P 2010 Adv. Mater. 22 702Google Scholar

    [27]

    Hu D C, Yang R, Jiang L, Guo X 2018 ACS Appl. Mater. Interfaces 10 6463Google Scholar

    [28]

    Zhu X, Lu W D 2018 ACS Nano 12 1242Google Scholar

    [29]

    Ham S, Choi S, Cho H, Na S I, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [30]

    Hu L X, Yang J, Wang J R, Cheng P H, Chua L O, Zhuge F 2020 Adv. Funct. Mater. 31 2005582Google Scholar

    [31]

    Wang Y, Yang J, Ye W B, She D H, Chen J R, Lv Z Y, Roy V A L, Li H L, Zhou K, Yang Q, Zhou Y, Han S T 2019 Adv. Electron. Mater. 6 1900765Google Scholar

    [32]

    Pradhan B, Das S, Li J, Chowdhury F, Cherusseri J, Pandey D, Dev D, Krishnaprasad A, Barrios E, Towers A, Gesquiere A, Tetard L, Roy T, Thomas J 2020 Sci. Adv. 6 eaay5225Google Scholar

    [33]

    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S A, Mayes E L H, Kuriakose S, Nawaz S, Spencer M J S, Chen H, Bhaskaran M, Sriram S, Walia S 2021 Adv. Mater. 33 e2004207Google Scholar

    [34]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2021 ACS Nano 15 1497Google Scholar

    [35]

    Feldmann J, Youngblood N, Wright C D, Bhaskaran H, Pernice W H P 2019 Nature 569 208Google Scholar

    [36]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020 ACS Nano 14 746Google Scholar

    [37]

    Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2021 Adv. Funct. Mater. 32 2108014Google Scholar

    [38]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018 Cogn. Neurodyn. 12 615Google Scholar

    [39]

    Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J, Chen Y H, Zhang H, Sun Q J, Wang Z L 2021 Sci. Adv. 7 eabd9117Google Scholar

    [40]

    Psaltis D, Lin S 1991 Proc. SPIE 1562 204Google Scholar

    [41]

    Wu Q T, Dang B J, Lu C Y, Xu G W, Yang G H, Wang J W, Chuai X C, Lu N D, Geng D, Wang H, Li L 2020 Nano Lett. 20 8015Google Scholar

    [42]

    Tan H W, Zhou Y F, Tao Q Z, Rosen J, van Dijken S 2021 Nat. Commun. 12 1120Google Scholar

    [43]

    Tsai M Y, Lee K C, Lin C Y, Chang Y M, Watanabe K, Taniguchi T, Ho C H, Lien C H, Chiu P W, Lin Y F 2021 Adv. Funct. Mater. 31 2105345Google Scholar

    [44]

    尼克尔斯 J G, 马丁 A R, 福克斯 P A, 布朗 D A, 戴蒙特 M E, 韦斯勃拉脱 D A 著 (杨雄里 译) 2014 从神经元到脑: 第5版 (北京: 科学出版社) 第10页

    Nicholls J G, Martin A R, Fuchs P A, Brown D A, Diamond M E, Weisblat D A (translated by Yang X L) 2014 From Neuron to Brain, Fifth Edition (Beijing: Science Press) p10 (in Chinese)

    [45]

    Kandel E R, Squire L R 2000 Science 290 1113Google Scholar

    [46]

    Bi G, Poo M 1998 J. Neurosic. 18 10464Google Scholar

    [47]

    Lee G, Baek J H, Ren F, Pearton S J, Lee G H, Kim J 2021 Small 17 e2100640Google Scholar

    [48]

    Fioravante D, Regehr W G 2011 Curr. Opin. Neurobiol. 21 269Google Scholar

    [49]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [50]

    Hennig M H 2013 Front Comput. Neurosci. 7 154Google Scholar

    [51]

    Montgomery J M, Madison D V 2004 Trends Neurosci. 27 744Google Scholar

    [52]

    Rachmuth G, Shouval H Z, Bear M F, Poon C S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1266Google Scholar

    [53]

    Zhao Y H, Liu B, Yang J L, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [54]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [55]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [56]

    Kumar M, Abbas S, Kim J 2018 ACS Appl. Mater. Interfaces 10 34370Google Scholar

    [57]

    Kumar M, Ban D K, Kim S M, Kim J, Wong C P 2019 Adv. Electron. Mater. 5 1900467Google Scholar

    [58]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021 Adv. Funct. Mater. 31 2101201Google Scholar

    [59]

    Zhao X N, Wang Z Q, Li W T, Sun S W, Xu H Y, Zhou P, Xu J Q, Lin Y, Liu Y C 2020 Adv. Funct. Mater. 30 1910151Google Scholar

    [60]

    Wang Y, Yang J, Wang Z P, Chen J R, Yang Q, Lv Z Y, Zhou Y, Zhai Y B, Li Z X, Han S T 2019 Small 15 e1805431Google Scholar

    [61]

    Zhou Y, Yew K S, Ang D S, Kawashima T, Bera M K, Zhang H Z, Bersuker G 2015 Appl. Phys. Lett. 107 072107Google Scholar

    [62]

    Zhou Y, Liu D N, Wang J H, Cheng Z Q, Liu L, Yang N, Liu Y X, Xia T, Liu X Y, Zhang X, Ye C, Xu Z, Xiong W, Chu P K, Yu X F 2020 ACS Appl. Mater. Interfaces 12 25108Google Scholar

    [63]

    Maier P, Hartmann F, Rebello Sousa Dias M, Emmerling M, Schneider C, Castelano L K, Kamp M, Marques G E, Lopez-Richard V, Worschech L, Höfling S 2016 Appl. Phys. Lett. 109 023501Google Scholar

    [64]

    ShanX Y, Zhao C Y, Wang X N, Wang Z Q, Fu S C, Lin Y, Zeng T, Zhao X N, Xu H Y, Zhang X T, Liu Y C 2021 Adv. Sci. 9 2104632Google Scholar

    [65]

    Li H L, Jiang X T, Ye W B, Zhang H, Zhou L, Zhang F, She D H, Zhou Y, Han S T 2019 Nano Energy 65 104000Google Scholar

    [66]

    Diorio C, Hasler P, Minch A, Mead C A 1996 IEEE Trans. Electron Devices 43 1972Google Scholar

    [67]

    Zhu L Q, Xiao H, Liu Y H, Wan C J, Shi Y, Wan Q 2015 Appl. Phys. Lett. 107 143502Google Scholar

    [68]

    Zhai Y B, Zhou Y, Yang X Q, Wang F, Ye W B, Zhu X J, She D H, Lu W D, Han S T 2020 Nano Energy 67 104262Google Scholar

    [69]

    Qian C, Oh S, Choi Y, Kim J H, Sun J, Huang H, Yang J, Gao Y, Park J H, Cho J H 2019 Nano Energy 66 104095Google Scholar

    [70]

    Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H, Park J H 2018 Adv. Funct. Mater. 28 1804397Google Scholar

    [71]

    Yin L, Han C, Zhang Q T, Ni Z Y, Zhao S Y, Wang K, Li D S, Xu M S, Wu H Q, Pi X D, Yang D R 2019 Nano Energy 63 103859Google Scholar

    [72]

    Wang J X, Chen Y, Kong L A, Fu Y, Gao Y L, Sun J 2018 Appl. Phys. Lett. 113 151101Google Scholar

    [73]

    Yang C M, Chen T C, Verma D, Li L J, Liu B, Chang W H, Lai C S 2020 Adv. Funct. Mater. 30 2001598Google Scholar

    [74]

    Yang X Y, Xiong Z Y, Chen Y J, Ren Y, Zhou L, Li H L, Zhou Y, Pan F, Han S T 2020 Nano Energy 78 105246Google Scholar

    [75]

    Mcculloch W S, Pitts W 1990 Bull. Math. Biol. 52 99Google Scholar

    [76]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25Google Scholar

    [77]

    Shainline J M, Buckley S M, Mirin R P, Nam S W 2017 Phys. Rev. Applied 7 034013Google Scholar

    [78]

    Kumar M, Kim H S, Kim J 2019 Adv. Mater. 31 e1900021Google Scholar

    [79]

    Chen S, Lou Z, Chen D, Shen G Z 2018 Adv. Mater. 30 1705400Google Scholar

    [80]

    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H, Park S K 2019 Adv. Mater. 31 e1906433Google Scholar

    [81]

    Chen Q L, Zhang Y, Liu S Z, Han T T, Chen X H, Xu Y Q, Meng Z Q, Zhang G L, Zheng X J, Zhao J J, Cao G Z, Liu G 2020 Adv. Intell. Syst. 2 2000122Google Scholar

    [82]

    Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H, Kim S 2020 ACS Nano 14 9796Google Scholar

    [83]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [84]

    Qiu W J, Huang Y L, Kong L A, Chen Y, Liu W R, Wang Z, Sun J, Wan Q, Cho J H, Yang J L, Gao Y L 2020 Adv. Funct. Mater. 30 2002325Google Scholar

    [85]

    Wu L D, Wang Z W, Wang B W, Chen Q Y, Bao L, Yu Z Z, Yang Y F, Ling Y T, Qin Y B, Tang K C, Cai Y M, Huang R 2021 Nanoscale 13 3483Google Scholar

    [86]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [87]

    Jang H, Liu C Y, Hinton H, Lee M H, Kim H, Seol M, Shin H J, Park S, Ham D 2020 Adv. Mater. 32 e2002431Google Scholar

    [88]

    Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O A, Rosen J, van Dijken S 2020 Nat. Commun. 11 1369Google Scholar

    [89]

    Kim S, Roe D G, Choi Y Y, Woo H, Park J, Lee J I, Choi Y, Jo S B, Kang M S, Song Y J, Jeong S, Cho J H 2021 Sci. Adv. 7 eabe3996Google Scholar

    [90]

    Karbalaei Akbari M, Zhuiykov S 2019 Nat. Commun. 10 3873Google Scholar

    [91]

    Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L, Kim T W, Chai Y, Li F S 2021 Nano Lett. 21 6087Google Scholar

    [92]

    Wan C J, Cai P Q, Guo X T, Wang M, Matsuhisa N, Yang L, Lv Z S, Luo Y F, Loh X J, Chen X D 2020 Nat. Commun. 11 4602Google Scholar

    [93]

    Yang X, Fang Y C, Yu Z Z, Wang Z W, Zhang T, Yin M H, Lin M, Yang Y C, Cai Y M, Huang R 2016 Nanoscale 8 18897Google Scholar

    [94]

    Rankin C H, Abrams T, Barry R J, Bhatnagar S, Clayton D F, Colombo J, Coppola G, Geyer M A, Glanzman D L, Marsland S, McSweeney F K, Wilson D A, Wu C F, Thompson R F 2009 Neurobiol. Learn. Mem. 92 135Google Scholar

    [95]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 15 1800079Google Scholar

    [96]

    Zhao B, Xiao M, Shen D Z, Zhou Y N 2020 Nanotechnology 31 125201Google Scholar

    [97]

    Gong G D, Gao S, Xie Z L, Ye X Y, Lu Y, Yang H L, Zhu X J, Li R W 2021 Nanoscale 13 1029Google Scholar

    [98]

    Akbari M K, Hu J, Verpoort F, Lu H L, Zhuiykov S 2020 Nano-Micro Lett. 12 83Google Scholar

    [99]

    Zhou L, Zhang S R, Yang J Q, Miao J Y, Ren Y, Shan H Q, Xu Z X, Zhou Y, Han S T 2020 Nanoscale 12 1484Google Scholar

    [100]

    Hawkins R D, Byrne J H 2015 Cold Spring Harb. Perspect. Biol. 7 a021709Google Scholar

    [101]

    Liu L, Cheng Z Q, Jiang B, Liu Y X, Zhang Y L, Yang F, Wang J H, Yu X F, Chu P K, Ye C 2021 ACS Appl. Mater. Interfaces 13 30797Google Scholar

    [102]

    Ahmed T, Kuriakose S, Mayes E L H, Ramanathan R, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Small 15 e1900966Google Scholar

    [103]

    Feldman D E 2012 Neuron 75 556Google Scholar

    [104]

    Abbott L F, Nelson S B 2000 Nat. Neurosci. 3 1178Google Scholar

    [105]

    Caporale N, Dan Y 2008 Annu. Rev. Neurosci. 31 25Google Scholar

    [106]

    Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M, Miao X S 2014 Sci. Rep. 4 4906Google Scholar

  • [1] 李松蔚, 谢勇. 基于功率谱的神经元放电早期预警信号. 物理学报, 2025, 74(1): 010501. doi: 10.7498/aps.74.20241471
    [2] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用. 物理学报, 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [3] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [4] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, 2022, 71(14): 148504. doi: 10.7498/aps.71.20220463
    [5] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [6] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [7] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, 2022, 71(14): 148701. doi: 10.7498/aps.71.20220350
    [8] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [9] 丁学利, 古华光, 贾冰, 李玉叶. 抑制性自突触诱发耦合Morris-Lecar神经元电活动的超前同步. 物理学报, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [10] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [11] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步. 物理学报, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [12] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [13] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [14] 李国芳, 孙晓娟. 小世界神经元网络随机共振现象:混合突触和部分时滞的影响. 物理学报, 2017, 66(24): 240501. doi: 10.7498/aps.66.240501
    [15] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响. 物理学报, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [16] 任国栋, 武刚, 马军, 陈旸. 一类自突触作用下神经元电路的设计和模拟. 物理学报, 2015, 64(5): 058702. doi: 10.7498/aps.64.058702
    [17] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步. 物理学报, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [18] 陈军, 李春光. 具有自适应反馈突触的神经元模型中的混沌:电路设计. 物理学报, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [19] 何国光, 朱萍, 陈宏平, 谢小平. 阈值耦合混沌神经元的同步研究. 物理学报, 2010, 59(8): 5307-5312. doi: 10.7498/aps.59.5307
    [20] 王朝庆, 徐 伟, 张娜敏, 李海泉. 色噪声激励下的FHN神经元系统. 物理学报, 2008, 57(2): 749-755. doi: 10.7498/aps.57.749
计量
  • 文章访问数:  20285
  • PDF下载量:  1474
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-02-22
  • 上网日期:  2022-07-10
  • 刊出日期:  2022-07-20

/

返回文章
返回