搜索

x
中国物理学会期刊

过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带

CSTR: 32037.14.aps.71.20220326

Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method

CSTR: 32037.14.aps.71.20220326
PDF
HTML
导出引用
  • 过渡金属二硫化物MX2/三卤化铬CrX3组成的范德瓦耳斯异质结能有效操控MX2的谷极化, 在能谷电子学中有广泛的应用前景. 本文结合第一性原理和k投影能带反折叠方法比较研究了MoSe2/CrI3, MoSe2/CrBr3和WS2/CrBr3三种磁性范德瓦耳斯异质结的堆垛和电子结构, 探索了体系谷极化产生的物理机理. 计算了异质结不同堆垛的势能面, 确定了稳定的堆垛构型, 阐明了时间/空间反演对称破缺对体系电子结构的影响. 由于轨道杂化, 磁性异质结的导带情况复杂, 且MoSe2/CrI3体系价带顶发生明显变化, 不能与单层MX2直接对比. 而借助于反折叠能带, 计算清晰揭示了CrX3MX2电子结构的影响, 定量地获得了MX2的能谷劈裂, 并发现层间距和应变可以有效调控能谷劈裂. 当层间距减小到2.6 Å 时, AB堆垛的MoSe2/CrI3谷劈裂值可达到10.713 meV, 是平衡结构的8.8倍, 相当于施加约53 T的外磁场. 通过k投影能带反折叠方法克服了异质结超胞电子结构不易分析的局限性, 对其他磁性范德瓦耳斯体系的研究具有重要的借鉴意义.

     

    The transition metal dichalcogenides MX2/Chromium Trihalides CrX3 van der Waals heterostructures can control the valley polarization of of MX2 effectively, which makes them possess promising potential applications in valleytronics. In the present work, the stacking order and electronic structure of MoSe2/CrI3, MoSe2/CrBr3 and WS2/CrBr3 are investigated based on the first-principle calculation and k-projection band unfolding method. The underlying mechanism of valley splitting is also explored. The stacking energy surfaces are calculated and the stable stacking configurations are determined. The effects of the breaking of time-symmetry and spatial-symmetry on electronic structure are also revealed. Because of the orbital hybridization, the conduction band of heterostructure becomes complicated and the valence band maximum changes drastically. It is thus difficult to compare the electronic structure of vdW heterostructure with that of free-standing MX2 directly. Through the unfolding energy band, the electronic structure change of MX2 induced by CrX3 is revealed clearly, and the valley splitting of MX2 is obtained quantitatively. Moreover, the interlayer distance and strain are found to be able to tune the valley splitting effectively. When the interlayer distance reduces to 2.6 Å, the valley splitting of MoSe2/CrI3 is enhanced to 10.713 meV with the increase of AB stacking, which is 8.8 times as large as the value of equilibrium structure. This work breaks through the limit of the complex electronic structure in supercell, providing an important reference for studying other magnetic vdW heterostructure.

     

    目录

    /

    返回文章
    返回