搜索

x
中国物理学会期刊

任意方向电偶极子在水平分层受限空间中的远区辐射场求解

CSTR: 32037.14.aps.71.20220545

Far-field calculation of an arbitrarily oriented electric dipole in horizontal layered confined space

CSTR: 32037.14.aps.71.20220545
PDF
HTML
导出引用
  • 任意方向电偶极子在分层受限空间中的远区辐射场求解对于分析云闪回击、对潜通信、地波超视距雷达等领域中电磁特性问题具有重要意义. 本文基于镜像法和偶极子在自由空间远区辐射场, 建立了三层水平受限空间模型, 对其间任意取向电偶极子产生的远区辐射场表达式进行了推导, 综合考虑了从源点到观测点的直达波及上、下界面的一次反射波影响. 在此基础上, 比较分析了频率为100 kHz, 6 MHz和10 MHz的电偶极子处于地-电离层模型中不同位置时传播的辐射特性. 结果显示: 对于同一位置辐射源, 电偶极子的频率越高, 辐射波瓣数目越多; 当偶极子源的频率相同时, 源点距离下界面越远, 辐射波瓣数目亦越多.

     

    The far-field calculation of arbitrarily oriented electric dipole in a stratified confined space is of great significance in analyzing electromagnetic properties in the lightning return stroke, submarine communication, over-the-horizon ground-wave radar, etc. Based on the mirror image method and the far-field approximation of an electric dipole in free space, a three-layer horizontal confined space model with an arbitrarily oriented dipole is established in this work. Through novel vector operations, the expression of the far field generated by an arbitrarily oriented electric dipole in the confined space model is derived, where the direct wave from the source point to the observation point and the waves reflected by the upper boundary and the lower boundary are all comprehensively considered. On this basis, the radiation characteristics of the electric dipole with frequencies of 100 kHz, 6 MHz and 10 MHz at different positions in the Earth-ionosphere waveguide are compared and analyzed, which are taken for example. Three different orientations of electric dipoles,i.e. vertical direction, horizontal direction, and 45º tilt are taken into account and the corresponding radiation patterns are presented. The results show that the radiation characteristics of electric dipoles in the Earth-ionosphere waveguide will change greatly with their frequencies, orientations and positions. For the electric dipole source at the same location, the higher the frequency, the more the number of radiation lobes is. In addition, when the source frequency keeps unchanged, the farther the dipole source is from the bottom boundary, the more the radiated lobes are. The proposed expression can conveniently and accurately consider the direct wave of a dipole source and its primary reflection from the upper interface and the lower interface in a confined space, and can also be further extended to solving the contribution of multiple reflections from the interfaces.

     

    目录

    /

    返回文章
    返回