搜索

x
中国物理学会期刊

二维锗醚在钠离子电池方面的理论研究

CSTR: 32037.14.aps.71.20220572

Theoretical research of two-dimensional germanether in sodium-ion battery

CSTR: 32037.14.aps.71.20220572
PDF
HTML
导出引用
  • 因为钠在地球中的储备更加充足, 而且生产成本也更低廉, 因此钠离子电池也成了继锂离子电池以后, 研究中最热门的储能系统. 然而, 缺少合适的阳极材料是钠离子电池商业化的主要瓶颈. 本文基于密度泛函理论, 通过第一性原理计算对锗醚作为钠离子电池阳极材料的电化学性能进行了充分研究. 计算结果表明钠离子能够均匀稳定地吸附在锗醚两侧, 吸附能达到了–1.32 eV. 即使在较低的钠吸附浓度下, 吸附之后的锗醚也呈现出金属性, 这表明锗醚的电子导电性良好. 钠在锗醚单层结构上有两条可能的扩散路径, 分别沿着之字形和扶手椅方向, 计算表明沿之字形方向的扩散势垒更低, 为0.73 eV. 同时锗醚具有合适的开路电压(1.12 V), 理论容量为167.1 mAh·g–1, 体积变化率仅为10.8%, 以上结果表明单层锗醚具有作为钠离子电池阳极材料的潜力.

     

    Because sodium is more abundant in earth’s reserves and the lower cost to produce, sodium-ion batteries (SIBs) have become the most popular energy storage system in research after lithium-ion batteries. However, the the lack of suitable anode materials is a major bottleneck for the commercialization of SIBs. Owing to their large specific surface area and high electron mobility, two-dimensional (2D) materials are considered as the promising anode materials. Some 2D materials have already demonstrated remarkable properties, such as 2D BP (1974 mAh·g–1) and BC7 (870.25 mAh·g–1). However, most of the predicted 2D materials are difficult to satisfy the various requirements for high-performance battery materials. Therefore, it is still necessary to find a new 2D material with excellent properties as electrode material. Recently, Ye et al. Ye X J, Lan Z S, Liu C S 2021 J. Phys. condens. Mat. 33 315301 predicted a potential 2D material named germanether. The germanether exhibits high electron mobility, which is higher than that of phosphine and MoS2, indicating its great potential applications in Nano Electronics. Therefore, by first-principles calculations based on density functional theory (DFT), the electrochemical properties of germanether as an anode material for SIBs are fully investigated. The computation results reveal that Na atoms can be adsorbed on germanether without clustering, and the adsorbed energy of Na-ion on the germanether is –1.32 eV. Then the charge redistribution of the whole system is also investigated through Mulliken charge population. In the adsorption process, Na atom transfers 0.71e to germanether. Even at low intercalated Na concentration, the Na adsorbed germanether system demonstrates metallic characteristics, showing good electronic conductivity. Two possible diffusion paths of material are calculated: one is along the armchair direction and the other is along the zigzag direction. The diffusion barrier along the zigzag direction is 0.73 eV for the most likely diffusion path, which is slightly higher than the diffusion barrier of MoS2, but still lower than many electrode materials used today. Meanwhile, germanether has a suitable specific energy capacity (167.1 mAh·g–1) and open circuit voltage (1.12 V). The volume change rate is only 10.8 %, which is lower than that of phosphorene and graphite. Based on the above results, germanether can serve as a potential anode material for SIBs.

     

    目录

    /

    返回文章
    返回