搜索

x
中国物理学会期刊

外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究

CSTR: 32037.14.aps.71.20220712

Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering

CSTR: 32037.14.aps.71.20220712
PDF
HTML
导出引用
  • 外尔半金属Td-WTe2是一种新型的拓扑量子材料, 具有很强的自旋轨道耦合作用和独特的拓扑能带结构, 被认为是一种非常有潜力的自旋电子材料. 通过构造WTe2/Ti异质结构, 能够解决原本在WTe2上无法直接制备出具有垂直磁各向异性铁磁层的难题. 与现有半导体工艺相兼容, 器件集成需要经受高温处理过程, 因此WTe2/Ti的热稳定性对于实际器件制备和应用至关重要. 然而, WTe2/Ti界面的热稳定性目前仍然不清楚. 本文利用显微拉曼散射技术系统研究了不同温度退火后的WTe2/Ti异质结的热稳定性, 发现WTe2和Ti的界面热稳定性与WTe2纳米片的厚度相关, WTe2纳米片厚度适当增加, WTe2/Ti异质结更加稳定. 此外, 高温退火会导致更加强烈的界面反应, 在473 K退火30 min后, WTe2 (12 nm)与Ti发生明显界面反应, 生成Ti-Te化合物, 该现象与高分辨透射电子显微镜测量和元素分析结果高度一致. 研究结果为进一步探究WTe2/Ti界面对于自旋轨道转矩效应的影响提供有用信息, 激发基于WTe2等拓扑材料的低功耗自旋器件研究.

     

    Weyl semimetal Td-phase WTe2, a novel topological matter, possesses a strong spin-orbit coupling and non-trivial topological band structure, and thus becomes a very promising superior spin current source material. By constructing the WTe2/Ti heterostructures, the issue that the ferromagnetic layer with perpendicular magnetic anisotropy cannot be directly prepared on WTe2 layer can be well addressed, and meet the requirements for high-performance spin-orbit torque devices. To be compatible with the semiconductor technology, the device integration usually involves a high temperature process. Therefore, the thermal stability of WTe2/Ti is critical for practical device fabrication and performance. However, the thermal stability of WTe2/Ti interface has not been very clear yet. In this work, the micro-Raman scattering technique is used to systematically study the WTe2/Ti interface annealed at different temperatures. It is found that the thermal stability of the interface between WTe2 and Ti is related to the thickness of WTe2 flake; appropriate increase of the WTe2 thickness can lead to the improvement of thermal stability in WTe2/Ti heterostructures. In addition, high temperature annealing can cause a significant interfacial reaction. After annealed at 473 K for 30 min, the interface between WTe2 (12 nm) and Ti changes dramatically, leading to the formation of Ti-Te interface layer. This observation is highly consistent with the observations by high-resolution transmission electron microscopy and the elemental analysis results as well. This study will provide useful information for further exploring the influence of the WTe2/Ti interface on the spin-orbit torque effect, and greatly invigorate the research area of energy efficient spintronic devices based on WTe2 and other novel topological materials.

     

    目录

    /

    返回文章
    返回