搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层石墨烯与TiAl合金复合材料固相烧结过程中Ti2AlC与Ti3AlC的形成机制

吴明宇 弭光宝 李培杰 黄旭

引用本文:
Citation:

多层石墨烯与TiAl合金复合材料固相烧结过程中Ti2AlC与Ti3AlC的形成机制

吴明宇, 弭光宝, 李培杰, 黄旭

Formation mechanisms of Ti2AlC and Ti3AlC during solid-state sintering between multilayer graphene and TiAl alloy composite

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu
PDF
HTML
导出引用
  • 向TiAl合金中添加C元素反应形成的Ti2AlC相与Ti3AlC相分别具有改善TiAl合金塑性和强度的作用. 一般地, 液相烧结过程中会发生L + TiC→Ti2AlC(Ti3AlC)的包晶反应, 但在固相烧结过程中Ti2AlC与Ti3AlC的形成可能具有不同机制. 本文以多层石墨烯为碳源, 通过1100—1350 ℃的固相烧结获得C与TiAl合金的界面反应组织, 借助微观组织表征与分析, 发现Ti2AlC与Ti3AlC生成过程中没有TiC参与. 进一步计算发现TiC/TiAl, Ti2AlC/TiAl与Ti3AlC/TiAl的界面能分别约为1.2, 0.87和0.39 J·m2, 据此得出Ti2AlC与Ti3AlC可以不经TiC中间相直接形成. 此外, 研究还发现在1150—1250 ℃几乎只生成Ti2AlC相, 但1250—1350 ℃界面产物组成为Ti3AlC + 少量Ti2AlC相, 原因在于烧结温度对基体α相含量存在影响, 进而影响Ti2AlC与Ti3AlC的形成倾向. 在1150—1250 ℃, TiAl合金基体由γ + 少量α相组成, Ti2AlC具有较高形成倾向; 1250—1350 ℃基体几乎完全转化为α相, α相含量增大对Ti3AlC的形成具有促进作用. 研究结果表明, 通过控制TiAl合金与多层石墨烯的固相烧结温度, 可以调控Ti2AlC与Ti3AlC的相对含量, 进而有望改善TiAl合金的塑性与强度.
    Ti2AlC and Ti3AlC formed by the reaction between C and TiAl alloy can improve the plasticity and strength of TiAl alloy respectively. Generally, the peritectic reaction of L + TiC→Ti2AlC (Ti3AlC) occurs in the process of liquid-phase sintering, but different formation mechanisms of Ti2AlC and Ti3AlC may exist in the solid-state sintering. In this work, multilayer graphene is employed to fabricate the reaction interface with TiAl alloy under 1100–1350 ℃, which is the common solid-state sintering temperature of TiAl alloy. According to the microstructure characterization and analysis, Ti2AlC and Ti3AlC are verified to contain no TiC. The interface energy values of TiC/TiAl, Ti2AlC/TiAl and Ti3AlC/TiAl are calculated to be about 1.2, 0.87 and 0.39 J·m2, respectively, indicating that Ti2AlC and Ti3AlC can be formed directly without TiC mesophase. Besides, only Ti2AlC is observed to be formed at 1150–1250 ℃, while the interface products at 1250–1350 ℃ change into Ti3AlC with a small amount of Ti2AlC. The mechanism that the sintering temperature affects the formation tendency of Ti2AlC and Ti3AlC can be ascribed to the content of α phase. The TiAl alloy matrix is composed of γ and a few α phases at 1150–1250℃, but almost completely transforms into α phase at 1250–1350 ℃, and the increase in the α content can promote the formation of Ti3AlC. The above results demonstrate the possibility of regulating the relative content of Ti2AlC and Ti3AlC through controlling the sintering temperature, which provides a promising method to improve the plasticity and strength of TiAl alloy.
      通信作者: 弭光宝, guangbao.mi@biam.ac.cn
    • 基金项目: 国家自然科学基金“叶企孙”科学基金(批准号: U2141222)和中国航发创新基金(批准号: CXPT-2018-36)资助的课题.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U2141222) and the Innovation Fund of AECC, China (Grant No. CXPT-2018-36).
    [1]

    Appel F, Clemens H, Fischer F D 2016 Prog. Mater. Sci 81 55Google Scholar

    [2]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Comm 16 364Google Scholar

    [3]

    Yamaguchi M, Inui H, Ito K 2000 Acta Mater 48 307Google Scholar

    [4]

    Gao B, Peng H, Liang Y, Lin J, Chen B 2021 Mater. Sci. Eng. A 881 141059

    [5]

    Kan W, Chen B, Peng H, Liang Y, Lin J 2020 Mater. Lett. 259 126856

    [6]

    Lapin J, Pelachova T, Bajana O 2019 J. Alloys Compd 797 754Google Scholar

    [7]

    Fang H, Chen R, Liu Y, Tan Y Guo J 2019 Intermetallics 115 106630Google Scholar

    [8]

    Gouma P I, Mills M J, Kim Y W 1998 Phil. Mag Lett 78 59Google Scholar

    [9]

    Wu H, Fan G H, Cui X P, Geng L, Yuan F, Pang J C, Wei L S, Huang M 2013 Mater. Sci. Eng. A 585 439Google Scholar

    [10]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2020 J. Aeron. Mater 40 45

    [11]

    Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A 2016 Int. Mater. Rev 62 241

    [12]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2022 Mater. Lett 310 131515Google Scholar

    [13]

    Guo B S, Ni S, Yi J H, Shen R J, Tang Z H, Du Y, Song M 2017 Mater. Sci. Eng. A 698 282Google Scholar

    [14]

    Song Y, Chen Y, Liu W W, Li W L, Wang Y G, Zhao D, Liu X B 2016 Mater. Des 109 256Google Scholar

    [15]

    Chen Y L, Yan M, Sun Y M, Mei B C, Zuo J Q 2009 Ceram. Int 35 1807Google Scholar

    [16]

    Song X J, Cui H Z, Hou N, Wei N, Han Y, Tian J, Song Q 2016 Ceram. Int 42 13586Google Scholar

    [17]

    MSIT, Cornish L, Cacciamani G, Cupid D M, Keyzer J D https://materials.springer.com/msi/docs/sm_msi_r_10_014870_02/ [2021-5-6]

    [18]

    Kim Y W 1992 Acta Metall. Mater 40 1121Google Scholar

    [19]

    王苹, 梅炳初, 洪小林, 朱教群, 周卫兵, 严明, 2007 武汉理工大学学报 29 5

    Wang P, Mei B C, Hong X L, Zhu J Q, Zhou W B, Yan M 2007 J. Wuhan Univ. Technol. 29 5 (in Chinese)

    [20]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib 15 392Google Scholar

    [21]

    Chen Y, Chu M Y, Wang L J, Bao X H, Lin Y, Shen J Y 2011 Phys. Status Solidi A 208 1879Google Scholar

    [22]

    胡庚祥 蔡珣 戎咏华 2013 材料科学基础 (上海: 上海交通大学出版社) 第130页

    Hu G X, Cai X, Rong Y H 2013 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p130 (in Chinese)

    [23]

    Merwe J, Woltersdorf J, Jesser W A 1986 Mater. Sci. Eng 81 1Google Scholar

    [24]

    刘文胜, 黄伯云, 周科朝, 唐建成 2000 材料导报 14 19

    Liu W S, Huang B Y, Zhou K C, Tang J C 2000 Mater. Rep. 14 19 (in Chinese)

    [25]

    Zhang W J, Reddy B V, Deevi S C 2001 Scr. Mater 45 645Google Scholar

    [26]

    Kumpfert J 2001 Adv. Eng. Mater 3 851Google Scholar

    [27]

    Todorova T Z, Gaier M, Zwanziger J W, Plucknett K P 2019 J. Alloy. Compd 789 712Google Scholar

    [28]

    Arusei G K, Chepkoech M, Amolo G O, Wambua N 2020 arXiv: 2011.07102 v1 [cond-mat. mtrl]

    [29]

    Zhang X W, Wang X H, Li F Z, Zhou Y C 2010 J. Am. Ceram. Soc 92 2698

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem 32 213Google Scholar

    [31]

    Болецкая B М1979 Metal Sci. Heat Treatm. Metals 12 37(in Russian)

    [32]

    Vanloo F, Bastin G F 1989 Metall. Meter. Trans. A 20 403

  • 图 1  MLG及TiAl合金粉体形貌 (a) MLG与TiAl粉体混合后的SEM形貌; (b) MLG的初始TEM形貌

    Fig. 1.  Morphology of MLG and TiAl powders: (a) SEM morphology of MLG mixed with TiAl powders; (b) original morphology of MLG under TEM.

    图 2  1100 ℃烧结后由未反应的MLG与TiAl基体组成的界面组织

    Fig. 2.  Interface structure composed of unreacted MLG and TiAl matrix sintered at 1100 ℃.

    图 3  1150 ℃烧结后MLG/TiAl的界面组织 (a) 部分反应的MLG及形成的Ti2AlC; (b) Ti2AlC的SAED图样

    Fig. 3.  Interface structure of MLG/TiAl composite sintered at 1150 ℃: (a) Partly reacted MLG and formed Ti2AlC; (b) SAED pattern of Ti2AlC.

    图 4  1300 ℃烧结后MLG/TiAl的界面组织 (a) 部分反应的MLG及生成Ti3AlC的TEM形貌; (b) Ti3AlC的SAED图样

    Fig. 4.  Interface structure of MLG/TiAl composite sintered at 1300 ℃: (a) TEM morphology of partly reacted MLG and formed Ti3AlC; (b) SAED pattern of Ti3AlC.

    图 5  Ti-Al-C 三元相图 (a) 1000 ℃等温截面图[17]; (b) 1250 ℃部分等温截面图[17]; (c) Ti-Al二元相图[18]

    Fig. 5.  Ternary diagram of Ti-Al-C: (a) Section at 1000 ℃[17]; (b) partial section at 1250 ℃[17]; (c) Ti-Al binary diagram[18]

    图 6  晶体结构示意图 (a) TiAl; (b) Ti3Al; (c) TiC; (d) Ti3AlC; (e) Ti2AlC

    Fig. 6.  Schematic diagram of crystal structure: (a) TiAl; (b) Ti3Al; (c) TiC; (d) Ti3AlC; (e) Ti2AlC.

    图 7  晶面原子排列示意图 (a) TiAl(111); (b) Ti3Al(0001); (c) Ti3AlC(111); (d) Ti2AlC(0001)

    Fig. 7.  Schematic diagram of atoms arrayed in crystal plane: (a) TiAl(111); (b) Ti3Al(0001); (c) Ti3AlC(111); (d) Ti2AlC(0001).

    图 8  C与TiAl合金的反应路径 (a) 液相烧结经由TiC发生包晶反应; (b) 1150—1250 ℃固相烧结界面反应形成Ti2AlC; (c) 1250—1350 ℃固相烧结界面反应形成Ti3AlC

    Fig. 8.  Reaction paths of C and TiAl alloy: (a) peritectic reaction via TiC during liquid-phase sintering; (b) Ti2AlC formed at 1150—1250 ℃ by solid-state sintering interface reaction; (c) Ti3AlC formed at 1250—1350 ℃ by solid-state sintering interface reaction.

    表 1  Ti-Al-C主要化合物的摩尔生成自由能

    Table 1.  Molar free energy of formation of compounds formed by Ti-Al-C.

    化合物摩尔生成自由能 ${\varDelta _{\text{f} } }G_{\text{m} }$/(kJ·mol–1)
    TiAl30.06522T – 289.37
    TiAl0.02224T – 91.078
    Ti3Al0.01678T – 109.75
    TiC0.01522T – 189.07
    Ti2AlC0.03045T – 387.13
    Ti3AlC0.1208T – 583.45
    下载: 导出CSV

    表 2  C与TiAl的摩尔反应自由能${\varDelta _{\text{r}}}G_{\text{m}}$(kJ·mol–1)

    Table 2.  Molar free energy ${\varDelta _{\text{r}}}G_{\text{m}}$ of reaction between C and TiAl (kJ·mol–1).

    摩尔反应自由能温度/℃
    11501250
    $ \Delta {G_1} $–3.72–3.69
    $ \Delta {G_2} $–5.52–5.50
    $ \Delta {G_3} $–6.88–6.68
    下载: 导出CSV

    表 3  Ti-Al-C化合物晶体结构数据

    Table 3.  Crystal structure data of Ti-Al-C compounds.

    序号晶体空间群晶格常数
    aTiAl${ { {{Pm} }\bar 3 m} }$a = b = 4.0051 Å, c = 4.0707 Å
    bTi3Al${{P63/mmc} }$a = b = 5.764 Å, c = 4.664 Å
    cTiC${ { {{Fm} }\bar 3 m} }$a = b = c = 4.328 Å
    dTi3AlC${ { {{Pm} }\bar 3 m} }$a = b = c = 4.156 Å
    eTi2AlC${{P63/mmc} }$a = b = 3.063 Å, c = 13.668 Å
    下载: 导出CSV

    表 4  TiAl, Ti3Al, TiC, Ti2AlC, Ti3AlC的基本物理参数[24-30]

    Table 4.  Basic physical parameters of TiAl, Ti3Al, TiC, Ti2AlC and Ti3AlC[24-30].

    TiAlTi3AlTiCTi2AlCTi3AlC
    弹性模量
    G/GPa
    705618211583
    泊松比 ν0.230.280.2280.1640.25
    线膨胀系数
    α/10–6
    12—14.512—14.57.749.6210.1
    下载: 导出CSV

    表 5  TiAl/TiC, TiAl/Ti2AlC, α/Ti2AlC, TiAl/Ti3AlC和α/Ti3AlC的界面能

    Table 5.  Interfacial energy of TiAl/TiC, TiAl/Ti2AlC, α/Ti2AlC, TiAl/Ti3AlC and α/Ti3AlC.

    温度/
    $ {\sigma _{{\text{γ /TiC}}}} $/
    (J·m2)
    $ {\sigma _{{\text{γ /H}}}} $/
    (J·m2)
    $ {\sigma _{{\text{α /H}}}} $/
    (J·m2)
    $ {\sigma _{{\text{γ /P}}}} $/
    (J·m2)
    $ {\sigma _{^{{\text{α /P}}}}} $/
    (J·m2)
    11501.2430.8790.8310.3960.308
    12001.2300.8720.8270.3900.303
    12501.2230.8680.8210.3850.288
    13001.2200.8660.8190.3840.288
    13501.2170.8640.8190.3830.287
    下载: 导出CSV

    表 6  MLG与TiAl合金反应生成单C原子层的TiC, Ti2AlC, Ti3AlC的总能量变化

    Table 6.  Total energy change of the interface reaction between MLG and TiAl with the formation of TiC, Ti2AlC, Ti3AlC per C atom layer.

    界面反
    应产物
    反应式1150 ℃总能量
    变化$ \Delta E $/$ {\text{J}} $
    1250 ℃总能量
    变化$ \Delta E $/$ {\text{J}} $
    TiC(1)–2.477S–2.467S
    Ti2AlC(2)–4.641S–4.632S
    Ti3AlC(3)–6.572S–6.392S
    下载: 导出CSV
  • [1]

    Appel F, Clemens H, Fischer F D 2016 Prog. Mater. Sci 81 55Google Scholar

    [2]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Comm 16 364Google Scholar

    [3]

    Yamaguchi M, Inui H, Ito K 2000 Acta Mater 48 307Google Scholar

    [4]

    Gao B, Peng H, Liang Y, Lin J, Chen B 2021 Mater. Sci. Eng. A 881 141059

    [5]

    Kan W, Chen B, Peng H, Liang Y, Lin J 2020 Mater. Lett. 259 126856

    [6]

    Lapin J, Pelachova T, Bajana O 2019 J. Alloys Compd 797 754Google Scholar

    [7]

    Fang H, Chen R, Liu Y, Tan Y Guo J 2019 Intermetallics 115 106630Google Scholar

    [8]

    Gouma P I, Mills M J, Kim Y W 1998 Phil. Mag Lett 78 59Google Scholar

    [9]

    Wu H, Fan G H, Cui X P, Geng L, Yuan F, Pang J C, Wei L S, Huang M 2013 Mater. Sci. Eng. A 585 439Google Scholar

    [10]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2020 J. Aeron. Mater 40 45

    [11]

    Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A 2016 Int. Mater. Rev 62 241

    [12]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2022 Mater. Lett 310 131515Google Scholar

    [13]

    Guo B S, Ni S, Yi J H, Shen R J, Tang Z H, Du Y, Song M 2017 Mater. Sci. Eng. A 698 282Google Scholar

    [14]

    Song Y, Chen Y, Liu W W, Li W L, Wang Y G, Zhao D, Liu X B 2016 Mater. Des 109 256Google Scholar

    [15]

    Chen Y L, Yan M, Sun Y M, Mei B C, Zuo J Q 2009 Ceram. Int 35 1807Google Scholar

    [16]

    Song X J, Cui H Z, Hou N, Wei N, Han Y, Tian J, Song Q 2016 Ceram. Int 42 13586Google Scholar

    [17]

    MSIT, Cornish L, Cacciamani G, Cupid D M, Keyzer J D https://materials.springer.com/msi/docs/sm_msi_r_10_014870_02/ [2021-5-6]

    [18]

    Kim Y W 1992 Acta Metall. Mater 40 1121Google Scholar

    [19]

    王苹, 梅炳初, 洪小林, 朱教群, 周卫兵, 严明, 2007 武汉理工大学学报 29 5

    Wang P, Mei B C, Hong X L, Zhu J Q, Zhou W B, Yan M 2007 J. Wuhan Univ. Technol. 29 5 (in Chinese)

    [20]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib 15 392Google Scholar

    [21]

    Chen Y, Chu M Y, Wang L J, Bao X H, Lin Y, Shen J Y 2011 Phys. Status Solidi A 208 1879Google Scholar

    [22]

    胡庚祥 蔡珣 戎咏华 2013 材料科学基础 (上海: 上海交通大学出版社) 第130页

    Hu G X, Cai X, Rong Y H 2013 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p130 (in Chinese)

    [23]

    Merwe J, Woltersdorf J, Jesser W A 1986 Mater. Sci. Eng 81 1Google Scholar

    [24]

    刘文胜, 黄伯云, 周科朝, 唐建成 2000 材料导报 14 19

    Liu W S, Huang B Y, Zhou K C, Tang J C 2000 Mater. Rep. 14 19 (in Chinese)

    [25]

    Zhang W J, Reddy B V, Deevi S C 2001 Scr. Mater 45 645Google Scholar

    [26]

    Kumpfert J 2001 Adv. Eng. Mater 3 851Google Scholar

    [27]

    Todorova T Z, Gaier M, Zwanziger J W, Plucknett K P 2019 J. Alloy. Compd 789 712Google Scholar

    [28]

    Arusei G K, Chepkoech M, Amolo G O, Wambua N 2020 arXiv: 2011.07102 v1 [cond-mat. mtrl]

    [29]

    Zhang X W, Wang X H, Li F Z, Zhou Y C 2010 J. Am. Ceram. Soc 92 2698

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem 32 213Google Scholar

    [31]

    Болецкая B М1979 Metal Sci. Heat Treatm. Metals 12 37(in Russian)

    [32]

    Vanloo F, Bastin G F 1989 Metall. Meter. Trans. A 20 403

  • [1] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [2] 王丽娜, 陈力, 盛敏佳, 王雷磊, 崔海航, 郑旭, 黄明华. 体相微马达双气泡聚并驱动的界面演化机制. 物理学报, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [3] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究. 物理学报, 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [6] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [7] 赵宁, 钟毅, 黄明亮, 马海涛, 刘小平. 热迁移对Cu/Sn/Cu焊点液-固界面Cu6Sn5生长动力学的影响. 物理学报, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [8] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [9] 刘磊, 陈铮, 王永欣. 合金沉淀颗粒劈裂的模拟研究(Ⅰ): 分裂机制. 物理学报, 2012, 61(18): 186401. doi: 10.7498/aps.61.186401
    [10] 黄明亮, 陈雷达, 周少明, 赵宁. 电迁移对Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni-P倒装焊点界面反应的影响. 物理学报, 2012, 61(19): 198104. doi: 10.7498/aps.61.198104
    [11] 宋成粉, 樊沁娜, 李蔚, 刘永利, 张林. TiAl合金薄膜在冷却过程中结构变化的原子尺度计算研究. 物理学报, 2011, 60(6): 063104. doi: 10.7498/aps.60.063104
    [12] 胡星, 王伟, 毛翔宇, 陈小兵. Co掺杂Bi5Ti3FeO15多铁陶瓷的磁电性能. 物理学报, 2010, 59(11): 8160-8166. doi: 10.7498/aps.59.8160
    [13] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [14] 王狂飞, 李邦盛, 任明星, 米国发, 郭景杰, 傅恒志. Ti-44at%Al合金小尺寸铸件柱状晶/等轴晶演化过程模拟. 物理学报, 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [15] 曹 博, 包良满, 李公平, 何山虎. Cu/SiO2/Si(111)体系中Cu和Si的扩散及界面反应. 物理学报, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [16] 张建民, 辛 红, 魏秀梅. 用MAEAM法计算Ag/Ni的界面能. 物理学报, 2005, 54(1): 237-241. doi: 10.7498/aps.54.237
    [17] 王佑祥, 岳瑞峰, 陈春华. Ti薄膜与AlN陶瓷的界面反应. 物理学报, 1998, 47(1): 75-82. doi: 10.7498/aps.47.75
    [18] 顾诠, 王佑祥, 崔玉德, 陈新, 陶琨. Ti和蓝宝石的界面反应. 物理学报, 1996, 45(5): 832-843. doi: 10.7498/aps.45.832
    [19] 沈电洪, 包昌林, 陆华, 张小军, 林彰达. Ti/AIN陶瓷界面反应的光电子能谱研究. 物理学报, 1995, 44(2): 259-265. doi: 10.7498/aps.44.259
    [20] 戴道宣, 唐厚舜, 倪宇红, 余夕同. Al/GaAs界面反应的XPS研究. 物理学报, 1983, 32(10): 1328-1332. doi: 10.7498/aps.32.1328
计量
  • 文章访问数:  3800
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-08-28
  • 上网日期:  2022-09-22
  • 刊出日期:  2022-10-05

/

返回文章
返回