搜索

x
中国物理学会期刊

有机分子插层调控二维关联电子系统的研究进展

CSTR: 32037.14.aps.71.20220856

Research progress of tuning correlated state in two-dimensional system by organic molecule intercalation

CSTR: 32037.14.aps.71.20220856
PDF
HTML
导出引用
  • 在采用机械解理方法制备的二维关联电子系统薄层样品中, 人们观察到了丰富的新奇物性. 发展新的宏观二维块材制备方法, 有可能在块体材料中发现与薄层样品类似的新奇物性. 结合传统的表征手段, 可以进一步地加深对低维系统的理解, 并将这些新奇物性推向潜在的应用领域. 本文将介绍一类有机分子插层调控二维关联电子系统的方法, 重点介绍层状结构材料在有机分子插层后结构和物理性质的变化, 分析其演化过程. 文章将介绍有机分子插层法在热电、磁性、电荷密度波和超导电性等物性调控方面的研究进展.

     

    Abundant novel physical properties have been observed in thin-flake samples of two-dimensional correlated electronic systems prepared by mechanical exfoliation. Developing new methods of preparing bulk two-dimensional samples can further understand the low-dimensional system by combining traditional bulk characterization methods like X-ray diffraction, magnetic susceptibility and specific heat measurements. It is possible to maintain the novel properties of thin-flake samples in bulk state and promote these novel physical properties for potential applications. This article introduces a class of organic molecular intercalation methods to regulate two-dimensional correlated electronic systems, focusing on the changes of structure and physical properties of two-dimensional materials after organic molecular intercalation. The applications of organic molecular intercalation method in regulating thermoelectricity, two-dimensional magnetism, charge density wave and two-dimensional superconductivity are also presented.

     

    目录

    /

    返回文章
    返回