搜索

x
中国物理学会期刊

高密度等离子体喷流高速对撞的二维辐射流体模拟研究

CSTR: 32037.14.aps.71.20220948

Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets

CSTR: 32037.14.aps.71.20220948
PDF
HTML
导出引用
  • 等离子体喷流对撞是天体物理和激光等离子体物理中常见的流体力学现象. 构建对撞等离子体状态和喷流初始条件的流体定标关系, 对于相关实验的物理设计和数据分析具有重要意义. 本文采用最新升级的二维自由拉格朗日辐射流体模拟程序MULTI-2D, 研究了高速(≥100 km/s)、高密度(≥10 g/cm3)条件下的喷流对撞过程. 基于不同条件下等离子体喷流高速对撞过程的模拟数据, 通过机器学习中的贝叶斯推断方法构建了描述等离子体喷流对撞过程的流体定标规律. 研究结果表明: 锥形等离子体喷流对撞易于形成等容分布的高密度等离子体; 提高喷流的初始密度和速度, 有利于提高对撞等离子体的密度和温度; 提高喷流的初始温度, 有利于提高对撞后的温度, 但会降低对撞后的等离子体密度. 当等离子体喷流的初始密度、温度和速度分别设定为15 g/cm3, 30 eV和300 km/s时, 对撞后的等离子体密度可以达到300 g/cm3以上, 这对于双锥对撞点火方案中的快电子加热过程非常重要.

     

    Head-on collisions of plasma jets are common hydrodynamic phenomena in astrophysical and laser-plasma interaction processes. Deriving scaling relationships between colliding plasmas and initial conditions of plasma jets is of great significance in optimizing the design and the data analysis of the relevant experiments. Double-cone ignition (DCI) scheme is an excellent platform for studying plasma jets’ collision, since the collision between high-speed, high-density plasma jets can be easily generated and characterized in both simulations and experiments.
    In this work, we employ the upgraded two-dimensional arbitrary Eulerian-Lagrange (ALE) program MULTI-2D to simulate the collision process of plasma jets with high speed (≥100 km/s) and high density (≥10 g/cm3). Using the database obtained from the simulations, hydrodynamic scaling laws describing the collision process of plasma jets are derived by the Bayesian inference method in machine learning. The Bayesian inference method not only has the parameter estimation function of traditional least square method, but also possesses other potential advantages such as giving the probability distribution of estimated parameters. Numerical results show that the collision of plasma jets with open boundaries is easy to form an isochoric plasma distribution with high-density. Increasing the initial density and velocity of the plasma jet is helpful in enhancing the density and temperature of the colliding plasma. Increasing the initial temperature of plasma jet is beneficial to achieving colliding plasmas with a higher temperature, while leading plasma density and pressure to decrease after head-on collision. When the initial density, temperature and velocity of the plasma jets are set to be 15 g/cm3, 30 eV and 300 km/s, respectively, the colliding plasma density can reach more than 300 g/cm3. This is very favorable for the following fast electron heating process in the double-cone ignition (DCI) scheme.
    The issue about quantum degeneracy after collision is discussed in this work. Under the typical initial conditions of plasma jets in DCI scheme (100\,\,\rmkm/\mathrms\leqslant V_0\leqslant 500\,\,\rmkm/\mathrms,10\,\,\rmeV\leqslant T_0\leqslant 100\,\,\rmeV,10\,\,\mathrmg/\mathrmc\mathrmm^3\leqslant \rho _0\leqslant 50\,\,\mathrmg/\mathrmc\mathrmm^3), both quantum degenerate plasma and classical non-degenerate plasma can be obtained in a temperature range between 0.3T_F (Fermi temperature) and 3T_F . By comparing the plasma temperature with the Fermi temperature of the collision, the criterion for achieving quantum degenerate plasma or non-degenerate plasma under given initial conditions is obtained with the help of the derived hydrodynamic scaling laws. The criterion shows that higher initial velocity, higher temperature and lower density of plasma jets are required if we want to obtain non-degenerate plasma after collision.

     

    目录

    /

    返回文章
    返回