-
强冲击下金属材料卸载熔化损伤/破碎问题是惯性约束聚变和武器工程等领域关注的关键问题之一, 基于强冲击金属材料卸载熔化状态下损伤演化过程的特点以及已有的研究, 本工作聚焦于解析熔融状态下材料内部孔洞分布特征的演化规律, 明确损伤演化中后期的孔洞汇合模式, 并给出相应的孔洞汇合判据, 揭示惯性效应、温度效应以及孔洞汇合对损伤发展和孔洞分布特征变化的影响机理; 建立损伤材料孔洞化失稳断裂与材料破碎颗粒度分布特性之间的关联, 进而实现金属材料卸载熔化损伤/破碎全过程的物理描述. 与现有的物理模型相比, 采用新给出的物理模型计算得到的材料卸载熔化损伤/破碎颗粒度分布结果更接近实验回收统计结果. 研究成果不仅加深强加载下材料动态损伤演化/破碎机理的物理认识, 提升工程结构以及内爆过程材料动态破坏精细化数值模拟结果的置信度, 也可以为结构设计优化和性能评估提供物理支持.A strong shock-wave, produced by plate impact, explosive detonation or laser irradiation, can induce metal materials to melt. Reflection of the triangular pressure wave from the free surface generates a strong tensile stress in the liquid state, resulting in the creation of an expanding cloud of liquid debris. This phenomenon is called micro-spalling. The understanding of spall damage evolution and dynamic fragmentation of melted metal under shockwave loading and subsequent releasing is an issue of considerable importance for both basic and applied science, to predict the evolution of engineering structures subjected to explosive detonation in implosive dynamics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. For dynamic failure processes, spall fracture in solid material has been extensively studied for many years, while scarce data can be found about how such a phenomenon can evolve after being melted partially or fully when being compressed or released. In this paper, by studying the physical laws of void evolution in melted metals, we expect to reveal the mode and criterion of void coalescence, inertial and temperature effects on void distribution and evolution, and the relationship between fragment distribution and characteristics of breakup of damaged material. According to these physical laws, we can develop theoretical model to describe the damage evolution and fragment distribution of metal that melts when shock releases. This model is implemented as a failure criterion in a one-dimensional hydrocode. The experimental results and computational results are in fairly good agreement with each other. Some discrepancies are explained by using both experimental uncertainties and model limitations which are carefully pointed out and discussed. We believe that these results can deepen our physical understanding of the damage evolutions of metals and improve the credibility of numerical simulation on the damage and fragmentation of materials under implosive loading.
-
Keywords:
- spall damage /
- release melting /
- void coalescence /
- fragment distribution /
- modeling
[1] Shao J L, Wang C, Wang P, He A M, Zhang F G 2019 Mech. Mater. 131 78Google Scholar
[2] Holtkamp D B, Clark D, Rerm E, Gallegos R A, Hammon D, Hemsing W F, Hogan G E, Holmes V H, King N S P, Liljestrand R, Lopez R P, Merrill F E, Morris C L, Morley K B, Murray M M, Pazuchanics P D, Prestridge K P, Quintana J P, Saunders A, Schafer T, Shinas M A, Stacy H L 2003 AIP Conference Proceeding Shock Compression Condensed Matter, Melville, New York, July 20–25, 2003 pp477–482
[3] Lescoute E, de Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510Google Scholar
[4] 张林, 李英华, 张祖根, 李雪梅, 胡昌明, 蔡灵仓 2017 爆炸与冲击 37 692Google Scholar
Zhang L, Li Y H, Zhang Z G, Li X M, Hu C M, Cai L C 2017 Explos. Shock Waves 37 692Google Scholar
[5] 陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202Google Scholar
Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202Google Scholar
[6] 陈永涛, 洪仁楷, 陈浩玉, 胡海波, 汤铁钢 2017 爆炸与冲击 37 61Google Scholar
Chen Y T, Hong R K, Chen H Y, Hu H B, Tang T G 2017 Explos. Shock Waves 37 61Google Scholar
[7] de Rességuier T, Signor L, Dragon A, Severin P, Boustie M 2007 J. Appl. Phys. 102 073535Google Scholar
[8] Signo L, de Rességuier T, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Engi. 37 887Google Scholar
[9] de Rességuier T, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Lett. 92 131910Google Scholar
[10] Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502Google Scholar
[11] Wang K, Zhang F G, He A M, Wang P 2019 J. Appl. Phys. 125 155107Google Scholar
[12] Zhou T T, He A, Wang P 2020 J. Nucl. Mater. 542 152496Google Scholar
[13] Wang X X, Sun Z Y, Zhao F Q, He A M, Zhou T T, Zhou H Q, Zhang F G, Wang P 2021 J. Appl. Phys. 130 205901Google Scholar
[14] Seppala E T, Belak J, Rudd R E 2004 Phys. Rev. Lett. 93 245503Google Scholar
[15] Strachan A, Çağın T, William A. Goddard I I I 2001 Phys. Rev. B 63 060103Google Scholar
[16] Durand O, Soulard L 2013 J. Appl. Phys. 114 194902Google Scholar
[17] 张凤国, 王裴, 胡晓棉, 邵建立, 周洪强, 冯其京 2017 高压物理学报 31 280Google Scholar
Zhang F G, Wang P, Hu X M, Shao J L, Zhou H Q, Feng Q J 2017 Chin. J. High Pres. Phys. 31 280Google Scholar
[18] Grady D E 1988 J. Mech. Phys. Solids 36 353Google Scholar
[19] 李英华, 张祖根, 李俊, 李牧, 张林 2014 强激光与粒子束 26 031003Google Scholar
Li Y H, Zhang Z G, Li J, Li M, Zhang L 2014 High Power Laser Particle Beams 26 031003Google Scholar
[20] Curran D R, Seaman L 1996 Simplified Models of Fracture and Fragmentation (New York: Springer-Verlag) pp340—365
[21] Seaman L, Curran D R, Shockey D A 1976 J. App. Phys. 47 4814Google Scholar
[22] Gurson A L 1977 J. Eng. Mater. Technol. 99 2Google Scholar
[23] Johnson J N 1981 J. App. Phys. 52 2812Google Scholar
[24] Tonks D L, Thissell W R, Schwartz D S 2003 AIP Shock Compression of Condensed Matter—2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Portland, Oregon, USA, July 20–25, 2003 pp507–510
[25] Jacques N, Czarnota C, Mercier S, Molinari A 2010 Int. J. Fract. 162 159Google Scholar
[26] Bai Y L, Ke F J, Xia M F 1991 Acta Mech. Sin. 7 59Google Scholar
[27] Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, de Resseguier T 2012 AIP Conference Proceeding 1426 1011
[28] 翟少栋, 李英华, 彭建祥, 张祖根, 叶想平, 李雪梅, 张林 2016 爆炸与冲击 36 767Google Scholar
Zhai S D, Li Y H, Peng J X, Zhang Z G, Ye X P, Li X M, Zhang L 2016 Explos. Shock Waves 36 767Google Scholar
[29] Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar
[30] Wilkerson J W 2017 Int. J. Plasticity 95 21Google Scholar
[31] Thomason P F 1999 Acta Matter. 47 3633Google Scholar
[32] Tonks D L, Zurek A K, Thissell W R 2003 J. De Physique IV 110 893Google Scholar
[33] 张凤国, 周洪强, 胡晓棉, 王裴, 邵建立, 冯其京 2016 爆炸与冲击 36 596Google Scholar
Zhang F G, Zhou H Q, Hu X M, Wang P, Shao J L, Feng Q J 2016 Explos. Shock Waves 36 596Google Scholar
[34] Dekel E, Eliezer S, Henis Z, Moshe E 1998 J. Appl. Phys. 84 4851Google Scholar
[35] Cortes R 1992 Int. J. Solids Struct. 29 1339Google Scholar
[36] 张凤国, 赵福祺, 刘军, 何安民, 王裴 2022 物理学报 71 034601Google Scholar
Zhang F G, Zhao F Q, Liu J, He A M, Wang P 2022 Acta Phys. Sin. 71 034601Google Scholar
[37] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
[38] 李茂生, 陈栋泉 2001 高压物理学报 15 24Google Scholar
Li M S, Chen D Q 2001 Chin. J. High Pres. Phys. 15 24Google Scholar
[39] Trumel H, Hild F, Roy G, Pellegrini Y P, Denoual C 2009 J. Mech. Phys. Solids 57 1980Google Scholar
[40] 张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601Google Scholar
Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar
[41] Wu X Y, Ramesh K T, Wright T W 2003 J. Mech. Phys. Solids 51 1Google Scholar
[42] Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar
[43] Czarnota C, Jacques N, Mercier S, Molinari A 2008 J. Mech. Phys. Solids 56 1624Google Scholar
[44] Jacques N, Mercier S, Molinari A 2012 Int. J. Fract. 173 203Google Scholar
[45] Venkert A, Gudurn P R, Ravichandran G 2001 J. Eng. Mater. Technol. 123 261Google Scholar
[46] 祁美兰, 贺红亮 2008 武汉理工大学学报 30 23Google Scholar
Qi M L, He H L 2008 J. Wuhan Univ. Technol. 30 23Google Scholar
[47] 张凤国, 刘军, 王裴, 胡晓棉, 周洪强, 邵建立, 冯其京 2018 爆炸与冲击 38 659Google Scholar
Zhang F G, Liu J, Wang P, Hu X M, Zhou H Q, Shao J L, Feng Q J 2018 Explos. Shock Waves 38 659Google Scholar
-
图 1 材料的卸载熔化损伤/破碎 (a)波系示意图(Us为冲击压缩波, P为冲击压缩波峰值压力, UT为反射稀疏波); (b)损伤/破碎过程MD模拟图; (c)熔化破碎实验结果
Fig. 1. Spall damage evolution and fragment distributing for melted metals under shock release: (a) Schematic of the shock wave; (b) MD simulation of damage/fragment development; (c) abel inverted volume densities of tin target.
-
[1] Shao J L, Wang C, Wang P, He A M, Zhang F G 2019 Mech. Mater. 131 78Google Scholar
[2] Holtkamp D B, Clark D, Rerm E, Gallegos R A, Hammon D, Hemsing W F, Hogan G E, Holmes V H, King N S P, Liljestrand R, Lopez R P, Merrill F E, Morris C L, Morley K B, Murray M M, Pazuchanics P D, Prestridge K P, Quintana J P, Saunders A, Schafer T, Shinas M A, Stacy H L 2003 AIP Conference Proceeding Shock Compression Condensed Matter, Melville, New York, July 20–25, 2003 pp477–482
[3] Lescoute E, de Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510Google Scholar
[4] 张林, 李英华, 张祖根, 李雪梅, 胡昌明, 蔡灵仓 2017 爆炸与冲击 37 692Google Scholar
Zhang L, Li Y H, Zhang Z G, Li X M, Hu C M, Cai L C 2017 Explos. Shock Waves 37 692Google Scholar
[5] 陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202Google Scholar
Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202Google Scholar
[6] 陈永涛, 洪仁楷, 陈浩玉, 胡海波, 汤铁钢 2017 爆炸与冲击 37 61Google Scholar
Chen Y T, Hong R K, Chen H Y, Hu H B, Tang T G 2017 Explos. Shock Waves 37 61Google Scholar
[7] de Rességuier T, Signor L, Dragon A, Severin P, Boustie M 2007 J. Appl. Phys. 102 073535Google Scholar
[8] Signo L, de Rességuier T, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Engi. 37 887Google Scholar
[9] de Rességuier T, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Lett. 92 131910Google Scholar
[10] Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502Google Scholar
[11] Wang K, Zhang F G, He A M, Wang P 2019 J. Appl. Phys. 125 155107Google Scholar
[12] Zhou T T, He A, Wang P 2020 J. Nucl. Mater. 542 152496Google Scholar
[13] Wang X X, Sun Z Y, Zhao F Q, He A M, Zhou T T, Zhou H Q, Zhang F G, Wang P 2021 J. Appl. Phys. 130 205901Google Scholar
[14] Seppala E T, Belak J, Rudd R E 2004 Phys. Rev. Lett. 93 245503Google Scholar
[15] Strachan A, Çağın T, William A. Goddard I I I 2001 Phys. Rev. B 63 060103Google Scholar
[16] Durand O, Soulard L 2013 J. Appl. Phys. 114 194902Google Scholar
[17] 张凤国, 王裴, 胡晓棉, 邵建立, 周洪强, 冯其京 2017 高压物理学报 31 280Google Scholar
Zhang F G, Wang P, Hu X M, Shao J L, Zhou H Q, Feng Q J 2017 Chin. J. High Pres. Phys. 31 280Google Scholar
[18] Grady D E 1988 J. Mech. Phys. Solids 36 353Google Scholar
[19] 李英华, 张祖根, 李俊, 李牧, 张林 2014 强激光与粒子束 26 031003Google Scholar
Li Y H, Zhang Z G, Li J, Li M, Zhang L 2014 High Power Laser Particle Beams 26 031003Google Scholar
[20] Curran D R, Seaman L 1996 Simplified Models of Fracture and Fragmentation (New York: Springer-Verlag) pp340—365
[21] Seaman L, Curran D R, Shockey D A 1976 J. App. Phys. 47 4814Google Scholar
[22] Gurson A L 1977 J. Eng. Mater. Technol. 99 2Google Scholar
[23] Johnson J N 1981 J. App. Phys. 52 2812Google Scholar
[24] Tonks D L, Thissell W R, Schwartz D S 2003 AIP Shock Compression of Condensed Matter—2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Portland, Oregon, USA, July 20–25, 2003 pp507–510
[25] Jacques N, Czarnota C, Mercier S, Molinari A 2010 Int. J. Fract. 162 159Google Scholar
[26] Bai Y L, Ke F J, Xia M F 1991 Acta Mech. Sin. 7 59Google Scholar
[27] Videau L, Combis P, Laffite S, Lescoute E, Jadaud J P, Chevalier J M, Raffestin D, Ducasse F, Patissou L, Geille A, de Resseguier T 2012 AIP Conference Proceeding 1426 1011
[28] 翟少栋, 李英华, 彭建祥, 张祖根, 叶想平, 李雪梅, 张林 2016 爆炸与冲击 36 767Google Scholar
Zhai S D, Li Y H, Peng J X, Zhang Z G, Ye X P, Li X M, Zhang L 2016 Explos. Shock Waves 36 767Google Scholar
[29] Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar
[30] Wilkerson J W 2017 Int. J. Plasticity 95 21Google Scholar
[31] Thomason P F 1999 Acta Matter. 47 3633Google Scholar
[32] Tonks D L, Zurek A K, Thissell W R 2003 J. De Physique IV 110 893Google Scholar
[33] 张凤国, 周洪强, 胡晓棉, 王裴, 邵建立, 冯其京 2016 爆炸与冲击 36 596Google Scholar
Zhang F G, Zhou H Q, Hu X M, Wang P, Shao J L, Feng Q J 2016 Explos. Shock Waves 36 596Google Scholar
[34] Dekel E, Eliezer S, Henis Z, Moshe E 1998 J. Appl. Phys. 84 4851Google Scholar
[35] Cortes R 1992 Int. J. Solids Struct. 29 1339Google Scholar
[36] 张凤国, 赵福祺, 刘军, 何安民, 王裴 2022 物理学报 71 034601Google Scholar
Zhang F G, Zhao F Q, Liu J, He A M, Wang P 2022 Acta Phys. Sin. 71 034601Google Scholar
[37] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
[38] 李茂生, 陈栋泉 2001 高压物理学报 15 24Google Scholar
Li M S, Chen D Q 2001 Chin. J. High Pres. Phys. 15 24Google Scholar
[39] Trumel H, Hild F, Roy G, Pellegrini Y P, Denoual C 2009 J. Mech. Phys. Solids 57 1980Google Scholar
[40] 张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601Google Scholar
Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar
[41] Wu X Y, Ramesh K T, Wright T W 2003 J. Mech. Phys. Solids 51 1Google Scholar
[42] Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar
[43] Czarnota C, Jacques N, Mercier S, Molinari A 2008 J. Mech. Phys. Solids 56 1624Google Scholar
[44] Jacques N, Mercier S, Molinari A 2012 Int. J. Fract. 173 203Google Scholar
[45] Venkert A, Gudurn P R, Ravichandran G 2001 J. Eng. Mater. Technol. 123 261Google Scholar
[46] 祁美兰, 贺红亮 2008 武汉理工大学学报 30 23Google Scholar
Qi M L, He H L 2008 J. Wuhan Univ. Technol. 30 23Google Scholar
[47] 张凤国, 刘军, 王裴, 胡晓棉, 周洪强, 邵建立, 冯其京 2018 爆炸与冲击 38 659Google Scholar
Zhang F G, Liu J, Wang P, Hu X M, Zhou H Q, Shao J L, Feng Q J 2018 Explos. Shock Waves 38 659Google Scholar
计量
- 文章访问数: 3479
- PDF下载量: 68
- 被引次数: 0