-
在光腔衰荡技术中,腔失调与腔损耗观测值之间存在复杂的非线性映射关系,导致调腔过程易陷入局部寻优,对测量准确性造成影响。本文基于角谱传播理论,建立了一种衰荡腔高斯光场传输模型,对典型调腔评价准则进行对比,并以模型仿真与实验研究相结合的方式,验证模型合理性。在仿真模型和实验系统中对特定腔镜施加二维倾斜角度扫描,获取两种典型调腔评价准则(即光强峰值和衰荡时间)的二维扫描分布。对比光强最大峰值和最长衰荡时间所对应的腔损耗观测状态。仿真结果表明光强最大峰值对应的腔损耗观测误差更小,观测重复性更高。实验结果同样表明光强最大峰值评价准则具有更好效果。模型仿真和实验研究的结果验证光强最大峰值评价准则在仿真和实验中具有更好的调腔重复性精度。同时,仿真与实验结果基本吻合,初步验证了本衰荡腔光场传输模型的合理性。本光场传输仿真模型对光腔衰荡技术在测量应用、光场响应及自动化调腔技术等方面的研究具有一定参考意义。In cavity ring-down technique,cavity maladjustment has essential effect on the measurement of intracavity loss.Several adjustment criterions had been introduced to achieve the optimal cavity state.However,experimental study has shown that these criterions may correspond to different cavity state,which means there is discrepancy between different criterions.In view of this problem,a model of intracavity propagation of Gaussian beam is established based on the angular spectrum propagation theory.This model is tested by numerical simulation and experimental research together.In the simulation,the true value of intracavity loss can be known beforehand.The two-dimensional angular scanning is carried out for certain cavity mirror.The two-dimensional distributions of the measure value of intracavity loss and the transmission light intensity are obtained simultaneously.These distribution are both nonlinear and multi-extremum,which will doubtlessly increase the difficulty of cavity adjustment.By comparing the distribution results,we do find the discrepancy between the largest transmission light intensity and the least measured intracavity loss.Meanwhile both of these two states may be not corresponding to the true value in fact.After statistical studies,the relative error of the least measured intracavity loss is-37.01±11.79ppm,whereas the relative error of the largest transmission intensity is-2.70±0.89ppm.The criterion of the largest transmission intensity shows better stability and repeatability.This model is further tested in a folded cavity ring-down setup.The similar scanning procedure in carried out.A major problem in the experiment is that the true value of intracavity loss cannot be known.So only the repeatability precision of the measured intracavity loss can be analyzed.The statistical results of the largest light intensity and the least measured intracavity loss are ±29.32ppm and ±70.71ppm,respectively.The criterion of the largest transmission intensity has better repeatability,which is basically consistent with the simulation result.In this way the rationality of this model can be verified to some degree.In this paper,the criterion of the largest transmission intensity is recommended in the cavity ring-down technique.Furthermore,this model can be a reference to the research of intracavity optical field response,intracavity optical field transmission,and the unstable resonator alignment,etc
-
Keywords:
- angular spectrum propagation /
- ring-down cavity /
- intracavity light field transmission /
- cavity maladjustment
-
[1] Sanders V 1977 Appl. Opt.16 19
[2] Tan Y, Wang J, Zhao X Q, Liu A W, Hu S M 2017 J. Quant. Spectrosc. Radiat. Transf.187 274
[3] McHale L E, Hecobian A, Yalin A P 2016 Opt. Express24 5523
[4] Li Z Y, Hu R Z, Xie P H, Chen H, Wu S Y, Wang F Y, Wang Y H, Ling L Y, Liu J G, Liu W Q 2018 Opt. Express26 A433
[5] Yang L Z, Yang J J, Yang Y, Zhang Z W, Wang J F, Zhang Z X, Xue P P, Gong Y K, Copner N 2017Opt. Express252031
[6] Smith I W 1978 Appl. Opt.17 2476
[7] Li B C, Gong Y 2010 US Patent 7 679 750 B2 [2010-03-16]
[8] Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2017 Chin. Opt. Lett.15053101
[9] Xiao S L, Li B C, Wang J 2020 Metrologia57 055002
[10] Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2016 Opt. Express24013343
[11] Hamzeh T, Anam C P, Liu J J 2020 Appl. Opt.599464
[12] Anderson D Z, Frisch J C, Masser C S 1984 Appl. Opt.23 1238
[13] Paldus B A, Kachanov A A 2005 Cana. J. Phys. 83 975
[14] Romanini D 2014 Appl. Phys. B 115 517
[15] Shadman S, Rose C, Yalin A P 2016 Appl. Phys. B122 194
[16] Maity A, Maithani S, Pradhan M 2021 Anal. Chem.93 388
[17] He X, Tian Z Z, Lai B H, Zhao W, Wang S, Yang P CN Patent113984670 A[2022-01-28]
[18] Hodges J T, Looney J P, Zee R D V 1996 J. Chem. Phys. 105 23
[19] Lehmann K K 1996 J. Chem. Phys. 105 23
[20] O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum.59 2544
[21] He X, Yan H, Dong L Z, Yang P, Xu B 2016 Chin. Phys. B25 014211
[22] He X, Luan Y S, Dong L Z, Yang P, Xu B, Tang G M 2016 Opto-Electronic Engineering43 46
计量
- 文章访问数: 2259
- PDF下载量: 9
- 被引次数: 0