搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征

胡裕栋 宋丽军 王晨曦 张沛 周静 李刚 张鹏飞 张天才

引用本文:
Citation:

基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征

胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才

Characterization of mode field distribution in optical Fabry-Perot cavity based on nanofiber

Hu Yu-Dong, Song Li-Jun, Wang Chen-Xi, Zhang Pei, Zhou Jing, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai
PDF
HTML
导出引用
  • 光学法布里-珀罗(F-P)谐振腔、粒子、微纳机械振子三者结合的复合腔光力学系统在基本物理问题、量子信息、精密测量等方面的研究和应用中越来越引起大家的重视. 本文将纳米光纤置于光学F-P谐振腔的腔模中, 探究了纳米光纤对光学F-P谐振腔精细度的影响, 并通过测量纳米光纤引起的光学F-P谐振腔内腔损耗随纳米光纤位置的关系直接获得光学F-P谐振腔的腰斑半径, 从而进一步实现了对光学F-P谐振腔腔内模场分布的无损表征. 此方法可以用于在纳米光纤表面装载的发光粒子与光学F-P谐振腔耦合的精确控制, 也为集合光子、粒子、声子的复合腔光力学研究提供了良好的平台.
    The composite cavity optomechanical system combining optical Fabry-Perot (F-P) cavities, particles, and micro/nano mechanical oscillators is becoming more significant in the researches and applications of the fundamental physics, quantum information processing, and precision measurement. Characterizing the mode field distribution of optical F-P cavity is significant prior to the application of optical F-P cavity. In this paper, we propose and demonstrate a method to measure the waist of an optical F-P cavity and to characterize the mode field distribution of the optical F-P cavity by using a nanofiber nondestructively. In experiment, a nanofiber is placed in the mode of the optical F-P cavity with a fineness of around 1500. The optical F-P cavity is composed of two mirrors each with high reflectivity of 99.8%. The radius of curvature of the each mirror is 50 mm. The cavity length is ($ 80 \pm 4 $) mm. The nanofiber is fabricated from a single-mode fiber by the flame-brush method. The nanofiber diameter is around 440 nm. The transmission spectra of the optical F-P cavity are measured by scanning the cavity length. The free spectrum ranges and the inner cavity losses can be obtained from the transmission spectra. First, the influence of the nanofiber on the optical F-P cavity fineness is investigated. The fineness as a function of nanofiber position along the radial direction of the optical F-P cavity is measured. The fineness caused by the nanofiber decreases to a minimum value of about 240. Second, it is investigated that the optical F-P cavity inner loss caused by the nanofiber as a function of the nanofiber position along the radial direction of the optical F-P cavity when the nanofiber is placed at the waist of the optical F-P cavity. The inner loss of the optical F-P cavity caused by the nanofiber is related to the intensity distribution of the optical F-P cavity mode field, which is predicted theoretically. Thus, by making the Gaussian fitting of the optical F-P cavity inner loss as a function of the nanofiber position, we can obtain a waist radius of the optical F-P cavity to be ($ 72 \pm 1 $) μm. This is in good agreement with the theoretical calculation. Finally, the mode field distribution of the optical F-P cavity along the cavity axis is characterized. This method can be used for precisely controlling the coupling between the particles on the surface of nanofiber and optical F-P cavity. Besides, this method provides a good platform for studying the hybrid optomechanical system combining cavities, photons and quantum emitters.
      通信作者: 张鹏飞, zhangpengfei@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278)和山西省“1331工程”重点学科建设基金资助的课题.
      Corresponding author: Zhang Peng-Fei, zhangpengfei@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    张智明 2015 量子光学 (北京: 科学出版社) 第184—193页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp184–193 (in Chinese)

    [2]

    李刚, 张鹏飞, 杨鹏飞, 王志辉, 张天才 2022 光学学报 42 76

    Li G, Zhang P F, Yang P F, Wang Z H, Zhang T C 2022 Acta Opt. Sin. 42 76

    [3]

    Walther H, Varcoe B T H, Englert B-G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [4]

    张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞 2021 光学学报 41 392

    Zhang T C, Wu W, Yang P F, Li G, Zhang P F 2021 Acta Opt. Sin. 41 392

    [5]

    Vahala K J 2003 Nature 424 839Google Scholar

    [6]

    宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 物理学报 68 074204Google Scholar

    Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar

    [7]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [8]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [9]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [10]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [11]

    Zhang Q Q, Fan Z Y, Zhang J P, Zhang F B, Zhang Q, Li Y M 2020 Appl. Opt. 59 8959Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Vučković J, Lončar M, Mabuchi H, Scherer A 2001 Phys. Rev. E 65 016608Google Scholar

    [14]

    Chen Y T, Szurek M, Hu B L, Hond J D, Braverman B, Vuletic V 2022 Opt. Express 30 37426

    [15]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901Google Scholar

    [16]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604

    [17]

    Yang P F, Li M, Han X, He H, Li G, Zou C L, Zhang P F, Zhang T C 2019 arXiv 1911.10300

    [18]

    Chen W L, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [19]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [20]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180Google Scholar

    [21]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [22]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [23]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [24]

    Kiraz A, Michler P, Becher C, Gayral B, Imamoğlu A, Zhang L D, Hu E 2001 Appl. Phys. Lett. 78 3932Google Scholar

    [25]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [26]

    Metcalf H J, Van der Straten P 2003 J. Opt. Soc. Am. B: Opt. Phys. 20 887Google Scholar

    [27]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [28]

    Münstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63Google Scholar

    [29]

    Fortier K M, Kim S Y, Gibbons M J, Ahmadi P, Chapman M S 2007 Phys. Rev. Lett. 98 233601Google Scholar

    [30]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [31]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. Chin. 4 190Google Scholar

    [32]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [33]

    Wang X, Song L J, Wang C X, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 073701

    [34]

    Nayak K P, Sadgrove M, Yalla R, Kien F L, Hakuta K 2018 J. Opt. 20 073001Google Scholar

    [35]

    Vetsch E, Reitz D, Sague’ G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [36]

    Davanco M I, Srinivasan K A 2009 Opt. Express 17 10542Google Scholar

    [37]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [38]

    Zhang P F, Wang X, Song L J, Wang C X, Li G, Zhang T C 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1401Google Scholar

    [39]

    Kien F L, Gupta S D, Balykin V I, Hakuta K 2005 Phys. Rev. A 72 032509Google Scholar

    [40]

    Fenton E F, Khan A, Solano P, Orozco L A, Fatemi F K 2018 Opt. Lett. 43 1534Google Scholar

    [41]

    Wuttke C, Cole G D, Rauschenbeutel A 2013 Phys. Rev. A 88 061801Google Scholar

    [42]

    Fogliano F, Besga B, Reigue A, Heringlake P, Lépinay M de L, Vaneph C, Reichel J, Pigeau B, Arcizet O 2021 Phys. Rev. X 11 021009

    [43]

    Pennetta R, Xie S, Russel P S 2016 Phys. Rev. Lett. 117 273901Google Scholar

    [44]

    Bernd W, Thorsten O, Sebastian S, Thomas H, Arno R 2021 Phys. Rev. Appl. 16 064021Google Scholar

    [45]

    Sakai H, Honda Y, Sasao N, Araki S, Higashi Y, Okugi T, Taniguchi T, Urakawa J, Takano M 2002 Jpn. J. Appl. Phys. 41 6398Google Scholar

    [46]

    You Y, Urakawa J J, Rawankar A, Aryshev A, Shimizu H, Honda Y, Yan L X, Huang W H, Tang C X 2012 Nucl. Instrum. Methods. Phys. Res. Sect. A 694 6Google Scholar

    [47]

    Sakaue K, Washio M, Araki S, Fukuda M, Higashi Y, Honda Y, Omori T, Taniguchi T, Terunuma N, Urakawa J, Sasao N 2009 Rev. Sci. Instrum. 80 123304Google Scholar

    [48]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

  • 图 1  (a) 理论模型结构示意图, 灰色阴影表示高斯光束, 红色阴影表示高斯光束在径向光功率密度分布, 蓝色长棒表示纳米光纤; (b) 光学F-P谐振腔的精细度随纳米光纤在y轴位置的变化关系的模拟结果, 红色三角块为纳米光纤造成光学F-P谐振腔的内腔损耗, 蓝色实线为光学F-P谐振腔腔内高斯光束的强度分布, 橙色圆点为光学F-P谐振腔精细度

    Fig. 1.  (a) Schematic of the model for numerical simulations. Gray shaded areas represent the Gaussian beams, red shaded areas represent the intensity distribution of Gaussian beams and long blue bars represent the nanofiber. (b) F-P cavity finesse as a function of the nanofiber position along y-axis. The orange circles are the finesse of F-P cavity. The red triangular blocks are the F-P cavity losses and the blue solid line is the intensity distribution of the Gaussian beam in the F-P cavity.

    图 2  (a) 实验装置示意图; (b) 纳米光纤的电镜照片

    Fig. 2.  (a) Schematic of experimental setup; (b) SEM image of the nanofiber.

    图 3  光学F-P谐振腔的精细度随纳米光纤在y轴位置的变化关系

    Fig. 3.  Finesse of the F-P cavity as a function of nanofiber position along y-axis.

    图 5  光学F-P谐振腔中轴向(z轴)的腔内模场分布

    Fig. 5.  Mode distribution in the F-P cavity along z-axis.

    图 4  纳米光纤处于光学F-P谐振腔腔模腰斑处, 光学F-P谐振腔内腔损耗随纳米光纤在y轴位置的变化关系

    Fig. 4.  F-P cavity loss as a function of the position of the nanofiber in the y-axis when the nanofiber is at the waist of the cavity.

  • [1]

    张智明 2015 量子光学 (北京: 科学出版社) 第184—193页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp184–193 (in Chinese)

    [2]

    李刚, 张鹏飞, 杨鹏飞, 王志辉, 张天才 2022 光学学报 42 76

    Li G, Zhang P F, Yang P F, Wang Z H, Zhang T C 2022 Acta Opt. Sin. 42 76

    [3]

    Walther H, Varcoe B T H, Englert B-G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [4]

    张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞 2021 光学学报 41 392

    Zhang T C, Wu W, Yang P F, Li G, Zhang P F 2021 Acta Opt. Sin. 41 392

    [5]

    Vahala K J 2003 Nature 424 839Google Scholar

    [6]

    宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 物理学报 68 074204Google Scholar

    Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar

    [7]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [8]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [9]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [10]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [11]

    Zhang Q Q, Fan Z Y, Zhang J P, Zhang F B, Zhang Q, Li Y M 2020 Appl. Opt. 59 8959Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Vučković J, Lončar M, Mabuchi H, Scherer A 2001 Phys. Rev. E 65 016608Google Scholar

    [14]

    Chen Y T, Szurek M, Hu B L, Hond J D, Braverman B, Vuletic V 2022 Opt. Express 30 37426

    [15]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901Google Scholar

    [16]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604

    [17]

    Yang P F, Li M, Han X, He H, Li G, Zou C L, Zhang P F, Zhang T C 2019 arXiv 1911.10300

    [18]

    Chen W L, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [19]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [20]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180Google Scholar

    [21]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [22]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [23]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [24]

    Kiraz A, Michler P, Becher C, Gayral B, Imamoğlu A, Zhang L D, Hu E 2001 Appl. Phys. Lett. 78 3932Google Scholar

    [25]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [26]

    Metcalf H J, Van der Straten P 2003 J. Opt. Soc. Am. B: Opt. Phys. 20 887Google Scholar

    [27]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [28]

    Münstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63Google Scholar

    [29]

    Fortier K M, Kim S Y, Gibbons M J, Ahmadi P, Chapman M S 2007 Phys. Rev. Lett. 98 233601Google Scholar

    [30]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [31]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. Chin. 4 190Google Scholar

    [32]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [33]

    Wang X, Song L J, Wang C X, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 073701

    [34]

    Nayak K P, Sadgrove M, Yalla R, Kien F L, Hakuta K 2018 J. Opt. 20 073001Google Scholar

    [35]

    Vetsch E, Reitz D, Sague’ G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [36]

    Davanco M I, Srinivasan K A 2009 Opt. Express 17 10542Google Scholar

    [37]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [38]

    Zhang P F, Wang X, Song L J, Wang C X, Li G, Zhang T C 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1401Google Scholar

    [39]

    Kien F L, Gupta S D, Balykin V I, Hakuta K 2005 Phys. Rev. A 72 032509Google Scholar

    [40]

    Fenton E F, Khan A, Solano P, Orozco L A, Fatemi F K 2018 Opt. Lett. 43 1534Google Scholar

    [41]

    Wuttke C, Cole G D, Rauschenbeutel A 2013 Phys. Rev. A 88 061801Google Scholar

    [42]

    Fogliano F, Besga B, Reigue A, Heringlake P, Lépinay M de L, Vaneph C, Reichel J, Pigeau B, Arcizet O 2021 Phys. Rev. X 11 021009

    [43]

    Pennetta R, Xie S, Russel P S 2016 Phys. Rev. Lett. 117 273901Google Scholar

    [44]

    Bernd W, Thorsten O, Sebastian S, Thomas H, Arno R 2021 Phys. Rev. Appl. 16 064021Google Scholar

    [45]

    Sakai H, Honda Y, Sasao N, Araki S, Higashi Y, Okugi T, Taniguchi T, Urakawa J, Takano M 2002 Jpn. J. Appl. Phys. 41 6398Google Scholar

    [46]

    You Y, Urakawa J J, Rawankar A, Aryshev A, Shimizu H, Honda Y, Yan L X, Huang W H, Tang C X 2012 Nucl. Instrum. Methods. Phys. Res. Sect. A 694 6Google Scholar

    [47]

    Sakaue K, Washio M, Araki S, Fukuda M, Higashi Y, Honda Y, Omori T, Taniguchi T, Terunuma N, Urakawa J, Sasao N 2009 Rev. Sci. Instrum. 80 123304Google Scholar

    [48]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取. 物理学报, 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [3] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响. 物理学报, 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [4] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [5] 郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平. 含多个相干耦合人工原子的单模腔的输入输出特性. 物理学报, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [6] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [7] 周英, 谢双媛, 许静平. 磁-腔量子电动力学系统中压缩驱动导致的两体与三体纠缠. 物理学报, 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [8] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [9] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [10] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [11] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [12] 李英, 胡艳军. 激光波长对纳米光纤俘获和输送聚苯乙烯微球的影响. 物理学报, 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [13] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [14] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [15] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [16] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [17] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [18] 赖振讲, 杨志勇, 白晋涛, 孙中禹. 二能级原子与相干态腔场相互作用过程中的纠缠交换. 物理学报, 2004, 53(11): 3733-3738. doi: 10.7498/aps.53.3733
    [19] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] 陈开鑫, 衣茂斌, 张大明, 侯阿临. 基于F-P腔的极化聚合物的纵向电光调制. 物理学报, 2000, 49(8): 1611-1613. doi: 10.7498/aps.49.1611
计量
  • 文章访问数:  5738
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-08-24
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回