-
谱域光学相干层析成像(Spectral-domain Optical Coherence Tomography,SD-OCT)系统中普遍存在波数域的非线性采样问题。为实现常规快速傅立叶变换算法下离散界面的精确定位与OCT图像的高质量重建,需要解决光谱仪中离散采样点绝对波数的精确标定问题。本文提出了一种基于精确光程差下特征谱线与约束拟合相位的绝对波数标定方法,在谱域OCT系统的样品臂中,使用具有精确厚度差异的金属量规,获得特征谱线对应的绝对相位值,进一步精确求解出特征谱线对应的相位包裹次数,克服了常规干涉光谱相位方法中普遍存在的2π 歧义,结合窗口约束条件下高信噪比区域的拟合相位,实现光谱仪采样点绝对波数的精确标定。通过全面比较本文方法与传统插值重采样方法在离散界面定位、轴向分辨率以及图像重建质量等方面的差异,验证了本方法的显著优势。
-
关键词:
- 谱域光学相干层析成像 /
- 光谱相位 /
- 绝对波数标定 /
- 窗约束拟合
Spectral-domain Optical Coherence Tomography (SD-OCT) systems generally have nonlinear sampling problems in wavenumber domain. In order to realize the precise positioning of the discrete interfaces and the high-quality reconstruction of OCT images under conventional fast Fourier transform, it is necessary to solve the precise calibration problem of the absolute wavenumber of the discrete sampling points in the spectrometer. In this paper, an absolute wavenumber calibration method based on the absolute phase of the characteristic spectral line and the constraint polynomial fitting phase under precise optical path difference was proposed. In the sample arm of the SD-OCT system, metal gauges with precise thickness difference are used to obtain the absolute phase value of the characteristic spectral line, and the phase wrapping times corresponding to the characteristic spectral line are further accurately solved. Thus, this method overcomes the 2π ambiguity of spectral phase in conventional interferometric phase methods. At the same time, combined with the polynomial fitting phase of the high signal-to-ratio region under window constraint, the accurate calibration of the absolute wavenumber of each sampling point is realized. Finally, comprehensive comparisons between the proposed method and the traditional resampling method in terms of discrete interface positioning, axial resolution and image reconstruction quality verifies the significant advantages of this method.-
Keywords:
- Spectral-domain optical coherence tomography /
- Spectral phase /
- Absolute wavenumber calibration /
- Window-constrained polynomial fitting
-
[1] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178
[2] Tomlins P H, Wang R K 2005 J. Phys. D:Appl. Phys. 38 2519
[3] Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471
[4] Heise B, Schausberger S E, Häuser S, Plank B, Salaberger D, Leiss-Holzinger E, Stifter D 2012 Opt. Fiber. Technol. 18 403
[5] Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C K, Stifter D 2005 Opt. Express 13 1015
[6] Endo T, Yasuno Y, Makita S, Itoh M, Yatagai T 2005 Opt. Express 13 695
[7] Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Express 11 889
[8] Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183
[9] de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 2067
[10] Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795
[11] Uribe-Patarroyo N, Kassani S H, Villiger M, Bouma B E 2018 Opt. Express 26 9081
[12] Hu Z, Rollins A M 2007 Opt. Lett. 32 3525
[13] Hyle Park B, Pierce M C, Cense B, Yun S H, Mujat M, Tearney G J, Bouma B E, Boer J F d 2005 Opt. Express 13 3931
[14] Perret E, Balmer T E, Heuberger M 2010 Appl. Spectrosc. 64 1139
[15] Tae Joong E, Yeh-Chan A, Chang-Seok K, Zhongping C 2011 J. Biomed. Opt. 16 1
[16] Wang K, Ding Z 2008 Chin. Opt. Lett. 6 902
[17] Wu X, Ye X, Yu D, Yu J, Huang Y, Tan H, Qin J, An L 2020 OSA Continuum 3 2156
[18] Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165
[19] Meissner M 2012 Acta Phys. Pol. A 121 164
[20] Yan Y, Ding Z, Shen Y, Chen Z, Zhao C, Ni Y 2013 Opt. Express 21 25734
[21] Han T, Qiu J, Wang D, Meng J, Liu Z, Ding Z 2020 J. Innov. Opt. Heal. Sciences 14 2140008
[22] Wang C, You Y J, Ai S, Zhang W, Liao W, Zhang X, Hsieh J, Zhang N, Tang B, Pan C L, Xue P 2019 J. Innov. Opt. Heal. Sciences 12 1950009
计量
- 文章访问数: 2187
- PDF下载量: 0
- 被引次数: 0