-
光电倍增管(Photomultiplier Tubes,PMT)具有光子级别的灵敏度,低暗计数,低后脉冲概率,目前被广泛应用于可见光波段的光子计数雷达中。PMT没有光子探测死区时间,每响应一个光子就会输出一个电子流脉冲,这些电子流脉冲有可能堆成规模更大的脉冲,使用阈值鉴别法鉴别光子事件时,堆叠的脉冲会引入额外的脉冲行走误差。考虑到脉冲堆叠的影响,建立了新的PMT光子探测理论模型,并通过蒙特卡洛仿真,得到了基于PMT的光子计数测距法的行走误差、测距精度和回波激光脉宽,PMT输出电子流脉宽以及光子事件鉴别阈值之间的关系。搭建了基于PMT的激光雷达系统,通过与GM-APD的对比实验证明了脉冲堆叠对PMT光子计数法测距存在不可忽略的影响。考虑到脉冲堆叠的PMT光子探测模型能够指导基于PMT的光子计数雷达的设计,提高测距系统的测距精度和准度。Photomultiplier tubes (PMT) have single photon level sensitivity, low dark count, low after pulse probability, and are widely used in photon-counting lidar in visible spectrum. PMT has no photon detection dead time, for every photon it responds to, it sends out a electron flow pulse, these pulses of electron flow have the po·tential to pile up into larger pulses. When using threshold identification method to identify photon-events, stacked pulse will introduce additional pulse walking error, in the practical application of laser ranging, will directly affect the ranging precision of photon-counting ranging method. Considering the influence of pulse pile-up, a new theoretical model of PMT photon detection was established to describe the influence of pulse pile-up on the detection probability of photon-events by analyzing the relationship between the detection time of photon and the identification time of the PMT final output photon-events. Through Monte Carlo simulation, the relationship among the ranging walking error, ranging accuracy, incident laser pulse width, PMT output electron flow pulse width and photon-events identification threshold is obtained. In order to verify the correctness of the theory, a PMT-based photon-counting lidar system is built. The comparison experiment with GM-APD proves that the influence of pulse pile-up on PMT photon-counting ranging method can not be ignored, and the experimental results are in good agreement with the theoretical model. The PMT photon detection model based on pulse pile-up can guide the design of PMT photon-counting radar and improve the ranging accuracy and precision of the ranging system.
-
Keywords:
- Photomultiplier tubes /
- Pulse pile up /
- photon-counting /
- ranging
-
[1] Degnan J 2016 Remote Sens. 8(11) 958
[2] Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543
[3] Kirmani A, Venkatraman D, Shin D, Colaco A, Wong F N C, Shapiro J H, Goyal V K Science. 2014 343 58
[4] Maccarone A, McCarthy A, Ren X, Warburton R E, Wallace A M, Moffat J, Petillot Y, Buller G S 2015 Opt. Express. 23 33911
[5] Li Z, Lai J, Wang C, Yan W, Li Z 2017 Appl. Opt. 56(23) 6680
[6] Akiba M, Inagaki K, Tsujino K 2012 Optics Express. 20(3) 2779
[7] Ravil A 2018 Applied Optics. 57(14) 3679
[8] Kitsmiller V J, Campbell C, O'Sullivan T D 2020 BiomedicalOptics Express. 11(9) 5373
[9] Jones R, Oliver C, Pike E R 1971 Appl. Opt. 10 1673
[10] McGill M, Markus T, Scott V. S, Neumann T 2013 J. Atmos. Oceanic Technol. 30(2) 345
[11] Abdalati W, Zwally H. J, Bindschadler R, Csatho B, Farrell S L, Fricker H. A, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C, 2010 Proc. IEEE 98(5) 735
[12] Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, B. Schutz E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260
[13] Helstrom C W 1984 Journal of Applied Physics. 55(7) 2786
[14] Ingle J D, Crouch S R 1972 Anal. Chem. 44(4) 777
[15] Donovan D P, Whiteway J A, Carswell I A 1993 Appl. Opt. 32(33) 6742
[16] Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Optics Communications. 434 7
[17] Zhang Z Y, Li S, Ma Y, Zhang W H, Zhao P F, Xiang Y Y 2020 Optics Express. 28(9) 13586
[18] Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48(17) 3261
[19] Li S, Zhang Z, Ma Y, Zeng H M, Zhao P F, Zhang W H 2019 Opt. Express 27(12) A861.
计量
- 文章访问数: 2498
- PDF下载量: 0
- 被引次数: 0