搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超重元素Og(Z=118)及其同主族元素的电离能和价电子轨道束缚能

张天成 潘高远 俞友军 董晨钟 丁晓彬

引用本文:
Citation:

超重元素Og(Z=118)及其同主族元素的电离能和价电子轨道束缚能

张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬

Ionization energy and valence electron orbital binding energy of the superheavy element Og(Z=118) and its homologs

Zhang Tian-Cheng, Pan Gao-Yuan, Yu You-Jun, Dong Chen-Zhong, Ding Xiao-Bin
PDF
导出引用
  • 通过系统地考虑相对论效应、价壳层电子之间的电子关联效应、量子电动力学(QED)效应和Breit相互作用,使用基于多组态Dirac-Hartree-Fock(MCDHF)方法的GRASP2K程序,系统地计算了超重元素Og(Z=118)及其同主族元素Ar、Kr、Xe和Rn的原子及其一价至五价离子的电离能。为了降低电离能中来源于未完全考虑电子关联效应引起的不确定度,使用外推方法对超重元素Og及其同主族元素Rn的原子及一价至五价离子的电离能进行了外推。外推得到的Rn0-5+和Og+的电离能与实验值和其他理论值吻合的很好。这些结果可用于预言超重元素Og的原子和化合物未知的物理和化学性质。除此之外,相对论和非相对论情况下超重元素Og及其同主族元素Ar、Kr、Xe和Rn的原子价壳层电子轨道束缚能的计算结果表明,受相对论效应影响,超重元素Og中的7s和7p1/2轨道出现了很强的轨道收缩现象,7p1/2和7p3/2轨道出现了很强的分裂现象,这些现象可能会导致超重元素Og的物理和化学性质异于同主族其他元素。
    The ionization energy of the superheavy element Og (Z=118) and its homolog elements Ar, Kr, Xe, Rn, and their ions were systematically calculated using the GRASP2K program based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, taking into account relativistic effects, electron correlation effects between valence shell electrons (VV), quantum electrodynamics (QED) effects, and Breit interaction. To reduce the uncertainty of the ionization energy derived from electron correlation effects which are not fully considered, the ionization potential of the superheavy element Og0-2+ and its homolog element Rn0-2+ are extrapolated by the extrapolation method. The ionization energy of extrapolated Rn0-5+ and Og5+ coincides well with experimental and other theoretical values. These results can be used to predict the unknown physical and chemical properties of the atoms and compounds of the superheavy element Og. In addition, the calculation of the electron orbital binding energy of the atomic valence shell of the superheavy element Og and its homolog elements Ar, Kr, Xe, and Rn under relativistic and non-relativistic conditions shows that due to the relativistic effect, there is a strong orbital contraction phenomenon in the 7s and 7p1/2 orbitals and a strong splitting phenomenon occurs in the 7p1/2and 7p3/2 orbitals of Og, which may cause the physical and chemical properties of the superheavy element Og to be different from other homologs.
  • [1]

    Düllmann C E 2017 Nuclear Physics News 27 14

    [2]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Physica Scripta 92 023003

    [3]

    Kailas S 2014 Pramana 82 619

    [4]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Reviews of Modern Physics 90 025008

    [5]

    Schädel M 2015 Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences 373 20140191

    [6]

    Heßberger F P 2013 ChemPhysChem 14 483

    [7]

    Öhrström L, Reedijk J 2016 Pure and Applied Chemistry 88 1225

    [8]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Physica Scripta 92

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Physical Review C 74 044602

    [10]

    Pyykko P 2011 Phys Chem Chem Phys 13 161

    [11]

    Desclaux J P 1973 Atomic Data and Nuclear Data Tables 12 311

    [12]

    Fricke B, Greiner W, Waber J T 1971 Theoret. Chim. Acta 21 235

    [13]

    Pyykko P 2011 Phys. Chem. Chem. Phys 13 161

    [14]

    Guo Y, Pašteka L F, Eliav E, Borschevsky A (Musial M, Hoggan P E ed) 2021 Advances in Quantum Chemistry (Academic Press) pp107-123

    [15]

    Hangele T, Dolg M, Hanrath M, Cao X, Schwerdtfeger P 2012 J Chem Phys 136 214105

    [16]

    Dzuba V A, Berengut J C, Harabati C, Flambaum V V 2017 Physical Review A 95 012503

    [17]

    Sato T K, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S-i, Düllmann C E, Grund J, Renisch D, Kratz J V, Schädel M, Eliav E, Kaldor U, Fritzsche S, Stora T 2018 Journal of the American Chemical Society 140 14609

    [18]

    Ramanantoanina H, Borschevsky A, Block M, Laatiaoui M 2022 Atoms 10

    [19]

    Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Gruning C, Thorle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong C Z, Fritzsche S, Haire R G 2003 Phys Rev Lett 90 163002

    [20]

    丁晓彬, 董晨钟2004 物理学报 53 4

    [21]

    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P 2003 Physical Review A 67

    [22]

    Lackenby B G C, Dzuba V A, Flambaum V V 2018 Physical Review A 98

    [23]

    Eliav E, Kaldo U, Ishikawa Y, Pyykkö P 1996 Phys. Rev. Lett. 77 5350

    [24]

    Pershina V, Borschevsky A, Eliav E, Kaldor U 2008 J Chem Phys 129 144106

    [25]

    Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W 2018 Phys Rev Lett 120 053001

    [26]

    Razavi A K, Hosseini R K, Keating D A, Deshmukh P C, Manson S T 2020 Journal of Physics B 53 8

    [27]

    Indelicato P, Santos J P, Boucard S, Desclaux J P 2007 The European Physical Journal D 45 155

    [28]

    Pershina V 2019 Radiochimica Acta 107 833

    [29]

    Johnson E, Fricke B, Keller O L, Nestor C W, Tucker T C 1990 The Journal of Chemical Physics 93 8041

    [30]

    Fricke B, Johnson E, Rivera G M 1993 Radiochimica Acta 62 17

    [31]

    Johnson E, Pershina V, Fricke B 1999 The Journal of Physical Chemistry A 103 8458

    [32]

    Johnson E F, B. Jacob, T. Dong, C. Z. Fritzsche, S. Pershina, V. 2002 The Journal of Chemical Physics 116 1862

    [33]

    Yu Y J, Li J G, Dong C Z, Ding X B, Fritzsche S, Fricke B 2007 The European Physical Journal D 44 51

    [34]

    Yu Y J, Dong C Z, Li J G, Fricke B 2008 J Chem Phys 128 124316

    [35]

    Liu J S, X. Wang, K. Sang, C. 2020 J Chem Phys 152 204303

    [36]

    Chang Z, Li J, Dong C 2010 The Journal of Physical Chemistry A 114 13388

    [37]

    Zhang D, Zhang F, Ding X, Dong C 2021 Chinese Physics B 30 043102

    [38]

    Ding X, Wu C, Zhang D, Zhang M, Dong C 2021 Journal of Quantitative Spectroscopy Radiative Transfer 259 107426

    [39]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Physical Review A 101

    [40]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)

    [41]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Computer Physics Communications 21 207

    [42]

    Mackenzie B, Grant I, Norrington P 1980 Computer Physics Communications 21 233

    [43]

    Dyall K, Grant I, Johnson C, Parpia F, Plummer E 1989 Computer Physics Communications 55 425

    [44]

    Parpia F A, Fischer C F, Grant I P 1996 Computer Physics Communications 94 249

    [45]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Computer Physics Communications 184 2197

    [46]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Computer Physics Communications 237 184

    [47]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Physical Review A 91

    [48]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Physical Review A 66

    [49]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nuclear Physics A 734 E21

    [50]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9), [Online], Available: https://physics.nist.gov/asd

  • [1] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 物理学报, doi: 10.7498/aps.72.20230940
    [2] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构. 物理学报, doi: 10.7498/aps.71.20221609
    [3] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能. 物理学报, doi: 10.7498/aps.71.20220813
    [4] 段春泱, 李娜, 赵岩, 李昌勇. 利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能. 物理学报, doi: 10.7498/aps.70.20201273
    [5] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, doi: 10.7498/aps.68.20182136
    [6] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, doi: 10.7498/aps.67.20172701
    [7] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究. 物理学报, doi: 10.7498/aps.67.20172261
    [8] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 物理学报, doi: 10.7498/aps.66.113101
    [9] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, doi: 10.7498/aps.63.066102
    [10] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案. 物理学报, doi: 10.7498/aps.62.123202
    [11] 王克栋, 关君, 朱川川, 刘玉芳. 从头计算研究CH3C(O)OSSOC(O)CH3的构型和能量. 物理学报, doi: 10.7498/aps.60.073102
    [12] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, doi: 10.7498/aps.57.1266
    [13] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, doi: 10.7498/aps.56.1347
    [14] 贾 飞, 徐瑚珊, 陈若富, 张宏斌, Avazbek Nasirov, 李君清, Scheid W.. 核对称轴不同相对取向对熔合动力学的影响. 物理学报, doi: 10.7498/aps.56.764
    [15] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究. 物理学报, doi: 10.7498/aps.56.2047
    [16] 张书锋, 苏国林, 任雪光, 宁传刚, 周 晖, 李 彬, 李桂琴, 邓景康. 二乙酰分子内价轨道4ag+4bu的电子动量谱学研究. 物理学报, doi: 10.7498/aps.54.1552
    [17] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究. 物理学报, doi: 10.7498/aps.54.4108
    [18] 李桂琴, 邓景康, 李 彬, 任雪光, 宁传刚, 张书锋, 苏国林. 丁酮分子内价轨道1a″的电子动量谱学研究. 物理学报, doi: 10.7498/aps.54.4669
    [19] 丁晓彬, 董晨钟. 超重元素Bh(Z=107)的激发态结构和共振吸收率的理论预言. 物理学报, doi: 10.7498/aps.53.3326
    [20] 葛自明, 王治文, 周雅君. 类锂体系(Z=21—30)基态1s22s电离能和相对论项能的理论计算. 物理学报, doi: 10.7498/aps.53.42
计量
  • 文章访问数:  1621
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2022-08-01

/

返回文章
返回