-
本文报道了9,9'-二亚呫吨分子在Ru(0001)上的吸附行为,随后通过扫描隧道显微镜(STM)在室温下研究了石墨烯的自下而上制备过程。在亚单层体系中,9,9'-二亚呫吨分子随机吸附在Ru(0001)上,我们简单分析了它的空间结构。并以 9,9'-二亚呫吨分子为前体,在Ru(0001)衬底上自下而上制备石墨烯,在超高真空中对Ru(0001)衬底进行长时间退火后,发现了具有不同旋转角(6.3°、13.9°和16.1°)的三种摩尔超结构,这是迄今为止未被观察到的,并通过构建模型分析理解了这三种摩尔超结构的形成机制。这个实验为丰富Ru(0001)上摩尔超结构多样性做出了贡献,同时也对以石墨烯/Ru(0001)为基的进一步科学研究打下坚实基础。This paper reports the adsorptions behavior of the 9,9'-Dixanthylidene on Ru(0001), the bottom-up fabrication of graphene was also investigated through a Scanning Tunneling Microscope (STM). We analyzed the spatial structure of 9,9'-Dixanthylidene molecules which were randomly dispersed on the Ru(0001) substrate in the sub-monolayer coverage. Then we bottom-up fabricated the graphene on Ru(0001) substrate with the 9,9'-Dixanthylidene molecules as the precursor. Three kinds of moiré superstructures with different rotation angles (6.3°, 13.9°, and 16.1°) were found after high temperature annealing in an ultrahigh vacuum. This experiment provides data support for the study of moiré superstructures on Ru(0001) substrate and lays a solid foundation for further scientific research based on graphene/Ru(0001).
-
Keywords:
- 9,9'-Dixanthylidene /
- graphene /
- Ru(0001) /
- scanning tunneling microscopy
-
[1] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[3] Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700
[4] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
[5] Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549
[6] Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385
[7] Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801
[8] Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424
[9] Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892
[10] N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 9 7 215501
[11] Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
[12] Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 S urf. Sci. 560 183
[13] Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406
[14] Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530
[15] Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102
[16] Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807
[17] Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831
[18] Wang B, Bocquet M L 2012 Nanoscale 4 4687
[19] Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104
[20] Han Y and Evans J W 2015 J. Chem. Phys. 143 164706
[21] Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525
[22] Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806
[23] Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801
[24] Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104
[25] Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705
[26] Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915
[27] Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470
[28] Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Char act. 31 415
[29] Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858
[30] Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705
[31] de Parga A L V, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807
[32] Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143
[33] Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546
[34] Kumar A, Wilson M, Thorpe M F 2012 J. Phys.:Condens. Matter 24 485003
[35] Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283
[36] Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041
[37] Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790
[38] Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530.
[39] Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906
[40] Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222
[41] Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[42] Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801
[43] N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033
[44] Wang B, Bocquet M L 2012 Nanoscale 4 4687
计量
- 文章访问数: 2274
- PDF下载量: 0
- 被引次数: 0