-
采用多参考组态相互作用方法计算了AsH+离子前3个离解极限所对应的8个电子态 (X2Π, a4Σ-, A2Σ-, b4Π, B2ΣΔ, C2Σ+, D2Π, 22Σ+)的电子结构. As原子选择了aug-cc-pwCV5Z-PP相对论赝势基组.在计算中考虑了Davidson修正,芯-价电子关联和自旋-轨道耦合效应.拟合得到了所有态的光谱常数,离解能越大的电子态,其谐振频率越大,平衡核间距越小.考虑自旋-轨道耦合效应后,由于避免交叉B2Δ3/2和B2Δ5/2变为双势阱结构.最后预测了A2Σ-→X2Π,a4Σ1/2-→和X2Π1/2和A2Σ1/2-→X2Π1/2跃迁的弗兰克-康登因子,自发辐射速率和自发辐射寿命,计算结果表明a4Σ-1/2阻禁跃迁的强度很小.本文的计算结果为以后AsH+离子的光谱实验研究提供理论基础.Potential energy curves (PECs), dipole moments (DMs) and transition dipole moments (TDMs) of the X2Π, a4Σ-, A2Σ-, b4Π, B2ΣΔ, C2Σ+, D2Π, 22Σ+ states correlating with the three lowest dissociation channels of AsH+cation are calculated by using the multireference configuration interaction (MRCI) method. The Davidson corrections, core-valence (CV) correlation and spin-orbit coupling (SOC) effects are considered. The aug-cc-pV5Z all-electron basis set of H atom and the aug-cc-pwCV5Z-PP pseudopotential basis set of As atom is selected in the calculation.
In the complete active space self-consistent field (CASSCF) calculation, H (1s) and As (4s4p) shell are selected as active orbital, As (3p3d) shells are selected as closed orbital, which keeps doubly occupation, the rest electrons are in the frozen orbital. In the MRCI calculation, As (3p3d) shells are used for CV correlation, the calculation accuracy can be improved. SOC effects are considered with Breit-Pauli operators.
All calculated states are bound states. The X2Π is the ground state, which is a depth potential well, the dissociation energy is 3.100 eV. The b4Π, C2Σ+ and D2Π are weakly bound states. The spectroscopic parameters are obtained by solving radial Schrodinger equation. To the best of our knowledge, there have not any study on the spectroscopy of AsH+ cation. Compared with Ⅴ-hydride cations MH+ (M = N, P, As), the order of the energy levels of the low-lying states for three ions are same. The dissociation energy and harmonic frequency both decreases with increase the atomic weight of M.
At spin-free level, the PECs of b4Π and B2Δ states cross at about 1.70 Å. When SOC effects are taken into account, according to the rule of avoid-crossing, the B2Δ3/2 and B2Δ5/2 states change to the double potential wells, and the avoided crossing between the B2Δ3/2 (B2Δ3/2) and b4Π3/2 (b4Π5/2) states is observed, respectively. The transition dipole moments (TDMs) of the A2Σ-→X2Π,a4Σ1/2-,X2Π1/2 and A2Σ1/2-→X2Π1/2 transitions are also calculated. The TDM at equilibrium distance of the a4Σ1/2-→X2Π1/2 spin-forbidden reaches 0.036 Debye, therefore, the SOC effect plays an important role. Based on the accurately PECs and PDMs, the Franck-Condon factors, spontaneous radiative coefficients and spontaneous radiative lifetimes of the A2Σ-→X2Π,a4Σ1/2-→和X2Π1/2 and A2Σ1/2-→X2Π1/2 transitions are also calculated.-
Keywords:
- Spin-orbit coupling effects /
- Spectroscopic parameters /
- Franck-Condon factors /
- Spontaneous radiative lifetimes
-
[1] Dixon R N, Duxbury G, Lamberton H M 1968 Proc. R. Soc. London. A. 305 271
[2] Arens M, Richter W 1990 J. Chem. Phys. 93 7094
[3] Beutel M, Setzer K D, Shestakov O, Fink E H 1996 J. Mol. Spectrosc. 178 165
[4] Pettersson L G, Langhoff S R 1986 J. Chem. Phys. 85 3130
[5] Matsushita T, Marian C M, Klotz R, Peyerimho S D 1987 Can. J. Phys. 65 155
[6] Balasubramanian K, Nannegari V 1989 J. Mol. Spectrosc. 138 482
[7] Shi D H, Liu H, Sun J F, Zhang J P, Liu Y F, Zhu Z L 2009 J. Mol. Struct. 911 8
[8] Bian W S, Li D H, Cao J W, Ma H T 2022 Phys. Chem. Chem. Phys. 24 10114
[9] Wan M J, Zhang Y G, Song C Q, Gao Tao 2008 J. Phys. B: At., Mol. Opt. Phys. 41 215102
[10] Yang C L, You Y, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A. 92 032502
[11] Bruna P J, Hirsch G, Peyerimhoff S D, Buenker R J 1981 Mol. Phys. 42 875
[12] Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B. 17 2040
[13] Yan B, Zhang X, Li X 2015 Spectrochim. Acta. Part A. 142 1
[14] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)
[15] Dunning, Jr. T H 1989 J. Chem. Phys. 90 1007
[16] Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116
[17] Knowles P J, Werner H -J 1985 J. Chem. Phys. 82 5053
[18] Knowles P J, Werner H -J 1985 Chem. Phys. Lett. 115 259
[19] Werner H -J, Knowles P J 1988 J. Chem. Phys. 89 5803
[20] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[21] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[22] Berning A, Schweizer M, Werner H -J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1283
[23] Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663
[24] Moore C E 1971 Atomic Energy Levels vol. Ⅱ (Washington, DC: US Govt Printing Office) pp144
[25] Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp460
[26] Tarroni R, Palmieri P, Mitrushenkov A, Tosi P, Bassi D 1997 J. Chem. Phys. 106 10265
[27] Colin R 1989 J. Mol. Spectrosc. 136 387
[28] Li R, Zhai Z, Zhang X M, Jin M X, Xu H F, Yan B 2015 J. Quant. Spectrosc. Ra. 157 42
[29] Xiao L D, Liu Y, Li R, Xiao Z Y, Yan B 2021 J. Quant. Spectrosc. Ra. 266 107593
计量
- 文章访问数: 2352
- PDF下载量: 0
- 被引次数: 0