搜索

x
中国物理学会期刊

水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型

CSTR: 32037.14.aps.72.20221495

Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation

CSTR: 32037.14.aps.72.20221495
PDF
HTML
导出引用
  • 会聚区是深海水声传播重要的物理现象, 对其准确建模和计算是深海远程水声探测与通信的基础. 但深海会聚区缺乏明确的数学描述, 特别是对于地球曲率所导致的系统误差, 目前主要采用近似计算与曲率修正相结合的方法, 尚无精确会聚区数学模型. 本文基于水声射线黎曼几何建模基础理论研究, 在弯曲球体流形上开展深海会聚区建模, 在分析总结会聚区物理特征的基础上, 给出深海会聚区黎曼几何描述, 得到深海会聚区位置、距离的分析形式和基于黎曼几何概念的计算方法, 为深海会聚区—这一重要的深海声学现象探索赋予黎曼几何学意义. 以Munk声速剖面为例, 对比分析深海会聚区在曲率修正和采用黎曼几何方法在球体流形上建模两种情形的时空分布, 验证了本文提出的深海会聚区黎曼几何模型的有效性, 结果显示近海面处的会聚区宽度随声传播呈现先变大后变小的规律, 最大约20 km, 最小约4 km.

     

    Convergence-zone (CZ) sound propagation is one of the most important hydro-acoustic phenomena in the deep ocean, which allows the acoustic signals with high intensity and low distortion to realize the long-range transmission. Accurate prediction and identification of CZ is of great significance in implementing remote detection or communication, but there is still no standard definition in the sense of mathematical physics for convergence zone. Especially for the issue of systematic error of computation introduced by the earth curvature, there is no exact propagation model. The curvature-correction methods always lead to the imprecision of the ray phase. In previous research work, we realized that the Riemannian geometric meaning of the caustics phenomena caused by ray convergence is that the caustic points are equivalent to the conjugate points, which form on geodesics with positive section curvature. In this work, we present a spherical layered acoustic ray propagation model for CZ based on the Riemannian geometric theory. With direct computation in the curved manifolds of the earth , a Riemannian geometric description of CZ is provided for the first time, on the basis of comprehensive analysis about its characteristics. And it shows that the mathematical expression of section curvature adds an additional item \hat c(l)\hat c^\prime (l)/l after considering the earth curvature, which reflects the influence of the earth curvature on the ray topology and CZ. By means of Jacobi field theory of Riemannian geometry, computational rule and method of the location and distance of CZ in deep water are proposed. Taking the typical Munk sound velocity profile for example, the new Riemannian geometric model of CZ is compared with the normal mode and curvature-correction method. Simulation and analysis show that the Riemannian geometric model of CZ given in this paper is a mathematical form naturally considering the earth curvature with theoretical accuracy, which lays more solid scientific foundations for the study of convergence zone. Moreover, we find that the location of CZ moves towards sound source when the earth curvature is considered, and the width of CZ near the sea surface first increases and then decreases with sound propagation proceeding. The maximum width is about 20 km and the minimum is about 4 km.

     

    目录

    /

    返回文章
    返回