搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展

劳斌 郑轩 李晟 汪志明

引用本文:
Citation:

过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展

劳斌, 郑轩, 李晟, 汪志明

Research progress of novel quantum states and charge-spin interconversion in transition metal oxides

Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming
PDF
HTML
导出引用
  • 为了满足信息技术时代下海量数据的高效存储及处理, 具有低功耗、非易失性的自旋电子器件受到极大关注. 能够高效产生自旋流的自旋源材料是新型自旋-轨道力矩器件的重要组成部分. 近二十年来, 在探索具有高效产生自旋流的材料体系, 以及理解材料相关物理机制两方面都取得了较大的进展. 最近, 在过渡金属氧化物中涌现出许多与产生自旋流密切相关的新奇量子态, 成为自旋源的新兴材料体系被广泛研究. 研究结果表明, 过渡金属氧化物具有对电子结构高度敏感、显著且灵活可调的电荷-自旋转换效率, 具有巨大的应用潜力. 本文主要综述了过渡金属氧化物中新奇的电子能带结构及其与电荷-自旋互转换的关联机制, 并对未来的发展趋势进行了展望.
    For efficient storage and processing of massive data in the information technology era, spintronic device attracts tremendous attention due to its low power consumption and non-volatile feature. Spin source material, which can efficiently generates spin current, is an important constituent of novel spin-orbit torque device. The efficiency of spin current generation in spin source material directly determines the performances of various spintronic devices. In the past two decades, great progress has been made in exploring high-efficient spin source material systems and understanding the relevant physical mechanisms. A wide variety of materials are explored, ranging from traditional heavy metals and semiconductors to topological insulators and two-dimensional (2D) materials. Recently, the material family of transition metal oxides attracts tremendous attention due to its efficient and highly tunable charge-spin conversion intimately related to its emerging novel quantum states and electronic structure. The mechanism of charge-spin conversion generally has two contributions: the bulk spin Hall effect and the spin-momentum locked interface with inversion symmetry breaking. Novel electronic structures such as topological band structures and spin-momentum locked surface states can realize efficient charge-spin conversion. For example, the Weyl points in SrRuO3 and the topological Dirac nodal line in SrIrO3 are predicted to give rise to a large Berry curvature and corresponding spin Hall conductance; the topological surface states can generate spin accumulation due to spin-momentum locking; the Rashba states at the oxide interface such as the 2D electron gas in SrTiO3 and KTaO3 can generate spin current by Rashba-Edelstein effect. Furthermore, the entanglement of various degrees of freedom, including spin, charge, lattice and orbit in transition metal oxides lead to the electronic structure being highly tunable by various methods including gate voltage, substrate constraint, thickness, interface engineering, etc. Therefore, charge-spin conversion in transition metal oxides is of great significance for both modulating of novel electronic structure in fundamental research and exploring its promising potential in future spintronic devices. In this review, we focus on introducing aspects of exotic electronic structures, spin transport mechanism, charge-spin interconversion characterization, efficiency and manipulation in transition metal oxides, and giving a prospect on the future development trend.
      通信作者: 汪志明, zhiming.wang@nimte.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0307800, 2017YFA0303600)和国家自然科学基金(批准号: 12174406, 11874367)资助的课题
      Corresponding author: Wang Zhi-Ming, zhiming.wang@nimte.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307800, 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 12174406, 11874367).
    [1]

    Agarwal S, Aimone B, Akinaga H, Akinola O, Badaroglu M, Bersuker G, Binek C 2021 International Roadmap For Devices And Systems (2021 Edition) https://irds.ieee.org/editions/2021

    [2]

    Manipatruni S, Nikonov D E, Young I A 2018 Nat. Phys. 14 338Google Scholar

    [3]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Onbaşlı M C, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [4]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 800439Google Scholar

    [5]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [6]

    Trier F, Noël P, Kim J V, Attané J P, Vila L, Bibes M 2021 Nat. Rev. Mater. 7 258Google Scholar

    [7]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57Google Scholar

    [8]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [9]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [10]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [11]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [12]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [13]

    Itoh S, Endoh Y, Yokoo T, Ibuka S, Park J G, Kaneko Y, Takahashi K S, Tokura Y, Nagaosa N 2016 Nat. Commun. 7 11788Google Scholar

    [14]

    Jadaun P, Register L F, Banerjee S K 2020 Proc. Natl. Acad. Sci. U.S.A. 117 11878Google Scholar

    [15]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [16]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [17]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Jarillo-Herrero P 2019 Nature 565 337Google Scholar

    [18]

    He P, Zhang S S, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495Google Scholar

    [19]

    He P, Zhang S S, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801Google Scholar

    [20]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [21]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [22]

    Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601Google Scholar

    [23]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [24]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [25]

    Yoon J, Lee S W, Kwon J H, Lee J M, Son J, Qiu X, Lee K J, Yang H 2017 Sci. Adv. 3 e1603099Google Scholar

    [26]

    Liu Y T, Huang C C, Chen K H, Huang Y H, Tsai C C, Chang T Y, Pai C F 2021 Phys. Rev. Appl. 16 024021Google Scholar

    [27]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039Google Scholar

    [28]

    Pai Y Y, Tylan-Tyler A, Irvin P, Levy J 2018 Rep. Prog. Phys. 81 036503Google Scholar

    [29]

    Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [30]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [31]

    Stemmer S, James Allen S 2014 Annu. Rev. Mater. Sci. 44 151Google Scholar

    [32]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [33]

    Trier F, Prawiroatmodjo G E, Zhong Z, Christensen D V, von Soosten M, Bhowmik A, Lastra J M, Chen Y, Jespersen T S, Pryds N 2016 Phys. Rev. Lett. 117 096804Google Scholar

    [34]

    Vaz D C, Noel P, Johansson A, Gobel B, Bruno F Y, Singh G, McKeown-Walker S, Trier F, Vicente-Arche L M, Sander A, Valencia S, Bruneel P, Vivek M, Gabay M, Bergeal N, Baumberger F, Okuno H, Barthelemy A, Fert A, Vila L, Mertig I, Attane J P, Bibes M 2019 Nat. Mater. 18 1187Google Scholar

    [35]

    King P D, McKeown Walker S, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S K, Meevasana W, Bahramy M S, Baumberger F 2014 Nat. Commun. 5 3414Google Scholar

    [36]

    Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y 2010 Phys. Rev. Lett. 104 126802Google Scholar

    [37]

    Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone J M 2010 Phys. Rev. Lett. 104 126803Google Scholar

    [38]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sanchez J C, Vaz D C, Naganuma H, Sicoli G, Attane J P, Jamet M, Jacquet E, George J M, Barthelemy A, Jaffres H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [39]

    Kaneta-Takada S, Kitamura M, Arai S, Arai T, Okano R, Anh L D, Endo T, Horiba K, Kumigashira H, Kobayashi M, Seki M, Tabata H, Tanaka M, Ohya S 2022 Nat. Commun. 13 5631Google Scholar

    [40]

    Noel P, Trier F, Vicente Arche L M, Brehin J, Vaz D C, Garcia V, Fusil S, Barthelemy A, Vila L, Bibes M, Attane J P 2020 Nature 580 483Google Scholar

    [41]

    Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T, Yang H 2017 Nano Lett. 17 7659Google Scholar

    [42]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603Google Scholar

    [43]

    Jin M J, Moon S Y, Park J, Modepalli V, Jo J, Kim S I, Koo H C, Min B C, Lee H W, Baek S H, Yoo J W 2017 Nano Lett. 17 36Google Scholar

    [44]

    Trier F, Vaz D C, Bruneel P, Noel P, Fert A, Vila L, Attane J P, Barthelemy A, Gabay M, Jaffres H, Bibes M 2020 Nano Lett. 20 395Google Scholar

    [45]

    Grigera S A, Gegenwart P, Borzi R A, Weickert F, Schofield A J, Perry R S, Tayama T, Sakakibara T, Maeno Y, Green A G, Mackenzie A P 2004 Science 306 1154Google Scholar

    [46]

    Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H, Sigrist M 1998 Nature 394 558Google Scholar

    [47]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, Beasley M R 2012 Rev. Mod. Phys. 84 253Google Scholar

    [48]

    Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [49]

    Mathieu R, Asamitsu A, Yamada H, Takahashi K S, Kawasaki M, Fang Z, Nagaosa N, Tokura Y 2004 Phys. Rev. Lett. 93 016602Google Scholar

    [50]

    Chen Y, Bergman D L, Burkov A A 2013 Phys. Rev. B 88 125110Google Scholar

    [51]

    Takiguchi K, Wakabayashi Y K, Irie H, Krockenberger Y, Otsuka T, Sawada H, Nikolaev S A, Das H, Tanaka M, Taniyasu Y, Yamamoto H 2020 Nat. Commun. 11 4969Google Scholar

    [52]

    Lin W, Liu L, Liu Q, Li L, Shu X, Li C, Xie Q, Jiang P, Zheng X, Guo R, Lim Z, Zeng S, Zhou G, Wang H, Zhou J, Yang P, Ariando, Pennycook S J, Xu X, Zhong Z, Wang Z, Chen J 2021 Adv. Mater. 33 2101316Google Scholar

    [53]

    Tian D, Liu Z, Shen S, Li Z, Zhou Y, Liu H, Chen H, Yu P 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2101946118Google Scholar

    [54]

    Haidar S M, Shiomi Y, Lustikova J, Saitoh E 2015 Appl. Phys. Lett. 107 152408Google Scholar

    [55]

    Richter T, Paleschke M, Wahler M, Heyroth F, Deniz H, Hesse D, Schmidt G 2017 Phys. Rev. B 96 184407Google Scholar

    [56]

    Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [57]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [58]

    Ou Y, Wang Z, Chang C S, Nair H P, Paik H, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [59]

    Zhou J, Shu X, Lin W, Shao D F, Chen S, Liu L, Yang P, Tsymbal E Y, Chen J 2021 Adv. Mater. 33 2007114Google Scholar

    [60]

    Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G, Han X 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [61]

    Li S, Lao B, Lu Z, Zheng X, Zhao K, Gong L, Tang T, Wu K, Li R W, Wang Z 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [62]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402Google Scholar

    [63]

    Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C, Noh T W 2008 Phys. Rev. Lett. 101 226402Google Scholar

    [64]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [65]

    Kim H S, Chen Y, Kee H Y 2015 Phys. Rev. B 91 235103Google Scholar

    [66]

    Nie Y F, King P D, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P, Xie L, Pan X, Fennie C J, Schlom D G, Shen K M 2015 Phys. Rev. Lett. 114 016401Google Scholar

    [67]

    Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z, Shen D W 2016 Sci. Rep. 6 30309Google Scholar

    [68]

    Liu J, Kriegner D, Horak L, Puggioni D, Rayan Serrao C, Chen R, Yi D, Frontera C, Holy V, Vishwanath A, Rondinelli J M, Marti X, Ramesh R 2016 Phys. Rev. B 93 085118Google Scholar

    [69]

    Fujioka J, Yamada R, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y 2019 Nat. Commun. 10 362Google Scholar

    [70]

    Patri A S, Hwang K, Lee H W, Kim Y B 2018 Sci. Rep. 8 8052Google Scholar

    [71]

    Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593Google Scholar

    [72]

    Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801Google Scholar

    [73]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski M S, Kim Y B, Ralph D C, Eom C B 2019 Proc. Natl. Acad. Sci. U.S.A. 116 16186Google Scholar

    [74]

    Everhardt A S, Dc M, Huang X, Sayed S, Gosavi T A, Tang Y, Lin C C, Manipatruni S, Young I A, Datta S, Wang J P, Ramesh R 2019 Phys. Rev. Mater. 3 051201Google Scholar

    [75]

    Liu L, Qin Q, Lin W, Li C, Xie Q, He S, Shu X, Zhou C, Lim Z, Yu J, Lu W, Li M, Yan X, Pennycook S J, Chen J 2019 Nat. Nanotechnol. 14 939Google Scholar

    [76]

    Wang H, Meng K Y, Zhang P, Hou J T, Finley J, Han J, Yang F, Liu L 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [77]

    Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica V A, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph D C, Ramesh R 2021 Adv. Mater. 33 e2008269Google Scholar

    [78]

    Liu L, Zhou G, Shu X, Li C, Lin W, Ren L, Zhou C, Zhao T, Guo R, Xie Q, Wang H, Zhou J, Yang P, Pennycook S J, Xu X, Chen J 2022 Phys. Rev. B 105 144419Google Scholar

    [79]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [80]

    Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [81]

    Amin V P, Stiles M D 2016 Phys. Rev. B 94 104420Google Scholar

    [82]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [83]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [84]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [85]

    Ren Z, Lao B, Zheng X, Liao L, Lu Z, Li S, Yang Y, Cao B, Wen L, Zhao K, Wang L, Bai X, Hao X, Liao Z, Wang Z, Li R W 2022 ACS Appl. Mater. Interfaces 14 15407Google Scholar

    [86]

    Nakamura H, Kimura T 2009 Phys. Rev. B 80 121308Google Scholar

    [87]

    King P D, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F, Meevasana W 2012 Phys. Rev. Lett. 108 117602Google Scholar

    [88]

    Santander-Syro A F, Bareille C, Fortuna F, Copie O, Gabay M, Bertran F, Taleb-Ibrahimi A, Le Fèvre P, Herranz G, Reyren N, Bibes M, Barthélémy A, Lecoeur P, Guevara J, Rozenberg M J 2012 Phys. Rev. B 86 121107Google Scholar

    [89]

    Bruno F Y, McKeown Walker S, Riccò S, la Torre A, Wang Z, Tamai A, Kim T K, Hoesch M, Bahramy M S, Baumberger F 2019 Adv. Electron. Mater. 5 1800860Google Scholar

    [90]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [91]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [92]

    Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104Google Scholar

    [93]

    Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B, Sun J 2017 ACS Appl. Mater. Interfaces 9 36456Google Scholar

    [94]

    Zhang H, Yan X, Zhang X, Wang S, Xiong C, Zhang H, Qi S, Zhang J, Han F, Wu N, Liu B, Chen Y, Shen B, Sun J 2019 ACS Nano 13 609Google Scholar

    [95]

    Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W, Sun J 2018 Phys. Rev. Lett. 121 116803Google Scholar

    [96]

    Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874Google Scholar

    [97]

    Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y, Hu F, Cai J, Shen B, Han W, Sun J 2019 Nano Lett. 19 1605Google Scholar

    [98]

    Vicente-Arche L M, Brehin J, Varotto S, Cosset-Cheneau M, Mallik S, Salazar R, Noel P, Vaz D C, Trier F, Bhattacharya S, Sander A, Le Fevre P, Bertran F, Saiz G, Menard G, Bergeal N, Barthelemy A, Li H, Lin C C, Nikonov D E, Young I A, Rault J E, Vila L, Attane J P, Bibes M 2021 Adv. Mater. 33 e2102102Google Scholar

    [99]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [100]

    Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257Google Scholar

    [101]

    Zheng Z, Zhang Y, Lopez-Dominguez V, Sanchez-Tejerina L, Shi J, Feng X, Chen L, Wang Z, Zhang Z, Zhang K, Hong B, Xu Y, Zhang Y, Carpentieri M, Fert A, Finocchio G, Zhao W, Khalili Amiri P 2021 Nat. Commun. 12 4555Google Scholar

    [102]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [103]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [104]

    He P, Walker S M, Zhang S S, Bruno F Y, Bahramy M S, Lee J M, Ramaswamy R, Cai K, Heinonen O, Vignale G, Baumberger F, Yang H 2018 Phys. Rev. Lett. 120 266802Google Scholar

    [105]

    Lee J H, Harada T, Trier F, Marcano L, Godel F, Valencia S, Tsukazaki A, Bibes M 2021 Nano Lett. 21 8687Google Scholar

    [106]

    Gonzalez-Hernandez R, Smejkal L, Vyborny K, Yahagi Y, Sinova J, Jungwirth T, Zelezny J 2021 Phys. Rev. Lett. 126 127701Google Scholar

    [107]

    Bose A, Schreiber N J, Jain R, Shao D F, Nair H P, Sun J, Zhang X S, Muller D A, Tsymbal E Y, Schlom D G, Ralph D C 2022 Nat. Electron. 5 267Google Scholar

    [108]

    Bai H, Han L, Feng X Y, Zhou Y J, Su R X, Wang Q, Liao L Y, Zhu W X, Chen X Z, Pan F, Fan X L, Song C 2022 Phys. Rev. Lett. 128 197202Google Scholar

    [109]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 024428Google Scholar

    [110]

    Gomonay O, Jungwirth T, Sinova J 2016 Phys. Rev. Lett. 117 017202Google Scholar

    [111]

    Zhu D, Zhao W 2020 Phys. Rev. Appl. 13 044078Google Scholar

    [112]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [113]

    Dyrdal A, Barnas J, Fert A 2020 Phys. Rev. Lett. 124 046802Google Scholar

    [114]

    Yu X Q, Zhu Z G, Su G 2021 Phys. Rev. B 103 035410Google Scholar

    [115]

    Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Eda G, Liang G, Yang H 2021 Nat. Nanotechnol. 16 421Google Scholar

    [116]

    Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415Google Scholar

    [117]

    Lao B, Liu P, Zheng X, Lu Z, Li S, Zhao K, Gong L, Tang T, Wu K, Shi YG, Sun Y, Chen X Q, Li R W, Wang Z 2022 Phys. Rev. B 106 L220409Google Scholar

  • 图 1  新奇电子结构及相关的电荷-自旋互转换机制

    Fig. 1.  Novel electronic structures and associated charge-spin interconversion mechanisms.

    图 2  SrTiO3表面2DEG的电子结构及自旋-电荷互转换相关表征结果 (a) SrTiO3表面2DEG费米面的ARPES结果, 与计算结果相吻合(出自文献[34], 已获得授权); (b)基于8能带紧束缚模型计算得到费米面处的自旋分布(左图)及能带交叉处的放大图(右图) (出自文献[34], 已获得授权); (c)计算得到的能带结构展示了能带混合以及Rashba劈裂, 且在能带交叉处有更大的Rashba劈裂 (出自文献[35], 已获得授权); (d) SrTiO3/Al 2DEG的电荷-自旋转换效率λIEE随调控电压Vg的变化 (出自文献[34], 已获得授权); (e) SrTiO3/LaAlO3/CoFeB中温度依赖的电荷-自旋转换效率 (出自文献[41], 已获得授权); (f)通过非局域效应测量2DEG中的自旋霍尔效应和逆自旋霍尔效应, 电压调控的Hanle效应可以通过施加外磁场观测 (出自文献[44], 已获得授权)

    Fig. 2.  Electronic structure and charge-spin interconversion in the 2DEG at the surface of SrTiO3: (a) The Fermi surface of the 2DEG at the surface of SrTiO3 from APRES measurement, which coincides with the calculated band structure (Reproduced with permission from Ref. [34]); (b) the spin textures of the Fermi surface calculated by the eight-band tight-binding model (left). The figure on the right is the zoom-in near the band crossing area (Reproduced with permission from Ref. [34]); (c) the calculated band structure exhibits band mixing and Rashba splitting, where the Rashba splitting is enhanced at the band crossing (Reproduced with permission from Ref. [35]); (d) charge-spin conversion efficiency λIEE of SrTiO3/Al 2DEG as a function of gate voltage Vg (Reproduced with permission from Ref. [34]); (e) the temperature dependent charge-spin conversion efficiency of SrTiO3/LaAlO3/CoFeB (Reproduced with permission from Ref. [41]); (f) the nonlocal measurement of the spin Hall effect and inverse spin Hall effect. The Hanle effect tuned by gating voltage is observed when applying magnetic field (Reproduced with permission from Ref. [44]).

    图 3  SrRuO3的电子结构、自旋输运及SOT相关表征结果 (a) 基于GGA计算的SrRuO3能带结构, 考虑了磁性、SOC及库仑相互作用的影响[51]; (b) SrRuO3(001)电子结构在费米面附近的能量-动量映射图, 左图为ARPES测量结果, 右图为DFT计算结果(出自文献[52], 已获得授权); (c) 正交相SrRuO3费米面附近贝里曲率分布的计算结果 (出自文献[52], 已获得授权); (d) 300—60 K范围内SrRuO3自旋霍尔电导率随温度的变化(插图: 相同温度区间内对应的电导率变化) (出自文献[58], 已获得授权); (e) 不同衬底上SrRuO3电荷-自旋转换效率随温度的变化 (出自文献[59], 已获得授权); (f) 不同衬底上的正交相(红色方块)和四方相(蓝色菱形) SrRuO3的电荷-自旋转换效率 (出自文献[60], 已获得授权)

    Fig. 3.  Electronic structures, spin transport properties and SOT associated characterization results of SrRuO3: (a) Band structure of SrRuO3 from GGA calculations taking into account the effects of magnetization, SOC and Coulomb interaction[51]; (b) comparison of energy momentum mappings near the Fermi surface measured by ARPES (left) and calculated by DFT (right) for SrRuO3(001) (Reproduced with permission from Ref. [52]); (c) calculated Berry curvature distributions near the Fermi surface in orthorhombic SrRuO3 (Reproduced with permission from Ref. [52]); (d) spin Hall conductivity of SrRuO3 as a function of temperature ranging from 300 to 60 K (inset: the corresponding electrical conductivity in the same temperature range) (Reproduced with permission from Ref. [58]); (e) charge-spin conversion efficiency of SrRuO3 grown on various substrates as a function of temeprature (Reproduced with permission from Ref. [59]); (f) comparison of charge-spin conversion efficiency between orthorhombic (red square) and tetragonal (blue diamond) SrRuO3 grown on various substrates (Reproduced with permission from Ref. [60]).

    图 6  过渡金属氧化物和重金属体系中电荷-自旋转换效率及翻转阈值电流密度的比较

    Fig. 6.  Comparison of charge-spin conversion efficiency and switching threshold current density between transition metal oxides and heavy metals.

    图 4  SrIrO3的电子结构、自旋输运及SOT相关表征结果 (a) 上: SrIrO3(001)费米面附近电子结构的ARPES测量结果; 左下: 费米面附近的空穴型能带; 右下: 费米面附近的线性色散电子型能带 (出自文献[66], 已获得授权); (b) SrIrO3(001)能带结构的ARPES测量和DFT计算的比较[67]; (c) SrIrO3体相的自旋霍尔电导σ, 图中x, y, z代表SrIrO3的伪立方结构的高对称轴[70]; (d) SrIrO3费米面上的自旋构型, 这种非平庸的自旋构型来源于SOC, 并能提供自旋-动量锁定 (出自文献[72], 已获得授权); (e) 正交相和四方相SrIrO3(001)的电荷-自旋转换效率, 上、下方插图分别为正交、四方相晶体结构的侧视图 (出自文献[73], 已获得授权); (f) 50—300 K范围内SrIrO3(001)/CoTb电荷-自旋转换效率随温度的变化 (出自文献[76], 已获得授权); (g) SrIrO3/La0.7Sr0.3MnO3和SrIrO3/Py电荷-自旋转换效率与SrIrO3厚度的关联性(出自文献[77], 已获得授权)

    Fig. 4.  Electronic structures, spin transport properties and SOT associated characterization results of SrIrO3. (a) Upper: The electronic structure map near the Fermi surface measured by ARPES; bottom-left: the holelike bands near the Fermi surface; bottom-right: the linearly dispersive electron band near the Fermi surface (Reproduced with permission from Ref. [66]); (b) comparison of the ARPES measurements and DFT calculations in band strucutre of SrIrO3 (001)[67]; (c) spin Hall conductivity σ in the SrIrO3 bulk, here x, y, and z represent the high-symmetry axes of the pseudo-cubic structure of SrIrO3[70]; (d) spin textures at SrIrO3 Fermi surface, this nontrivial spin textures are originated from the SOC and offers the spin-momentum locking (Reproduced with permission from Ref. [72]); (e) charge-spin conversion efficiency of SrIrO3(001)/Py with orthorhombic and tetragonal structures, the top and bottom schematics illustrate side view of the orthorhombic and tetragonal crystalline structures, respectivity (Reproduced with permission from Ref. [73]); (f) temperature dependence of charge-spin conversion efficiency of SrIrO3(001)/CoTb ranging from 50 to 300 K (Reproduced with permission from Ref. [76]); (g) charge-spin conversion efficiency as a function of SrIrO3 thickness for SrIrO3/ La0.7Sr0.3MnO3 (solid squares) and SrIrO3/Py (opened triangles) (Reproduced with permission from Ref. [77]).

    图 5  KTaO3的电子结构、自旋输运及SOT相关表征结果 (a) KTaO3晶体结构和能带结构示意图, 由t2g轨道构成的导带在SOC作用下劈裂成HE, LE和SO三个子带(出自文献[86], 已获得授权); (b) KTaO3(001)表面2DEG的ARPES结果, 测量的能带结构示意图由红线表示(出自文献[87], 已获得授权); (c) KTaO3(111)表面2DEG的ARPES结果, 左侧为费米面的测量(上)和计算(下)结果, 星型-六角形费米面由dxy, dxz, dyz轨道构成; 右侧为两个高对称方向的费米面测量结果侧视图(出自文献[89], 已获得授权); (d) KTaO3/EuO界面的热自旋注入与inverse Edelstein效应示意图(上), 及测量的逆 Edelstein电流与EuO厚度的关联性(下) (出自文献[97], 已获得授权); (e) 通过逆 Rashba-Edelstein效应产生的电荷流与所施加dc磁场的关联性, 插图为SP-FMR测量的配置图(出自文献[98], 已获得授权); (f) 双线性磁电阻与电流(左)和磁场(右)的关系(出自文献[98], 已获得授权)

    Fig. 5.  Electronic structures, spin transport properties and SOT associated characterization results of KTaO3: (a) Schematic crystalline structure and band structure of KTaO3, the conducting t2g band consists of complicated HE, LE and SO subbands due to SOC (Reproduced with permission from Ref. [86]); (b) ARPES results of surface 2DEG in KTaO3(001), the red curves presents schematics of the measured band structure (Reproduced with permission from Ref. [87]); (c) ARPES results of surface 2DEG in KTaO3(111); leftside: measured (upper) and calculated (bottom) starlike-hexagonal Fermi surface of the 2DEG, which consists of dxy, dxz and dyz orbits; rightside: sideviews of the measured Fermi surface along high symmetry directions (Reproduced with permission from Ref. [89]); (d) schematic for thermal spin injection and inverse Edelstein effect (upper) and EuO thickness dependent inverse Edelstein current (bottom) of the KTaO3/EuO interface (Reproduced with permission from Ref. [97]); (e) the transverse charge current generated through the inverse Rashba-Edelstein effect as a function of applied dc magnetici field, the inset schematic presents the SP-FMR measurement configuration (Reproduced with permission from Ref. [98]); (f) bilinear magnetoresistence as functions of applied charge current (left) and magnetici field (right) (Reproduced with permission from Ref. [98]).

  • [1]

    Agarwal S, Aimone B, Akinaga H, Akinola O, Badaroglu M, Bersuker G, Binek C 2021 International Roadmap For Devices And Systems (2021 Edition) https://irds.ieee.org/editions/2021

    [2]

    Manipatruni S, Nikonov D E, Young I A 2018 Nat. Phys. 14 338Google Scholar

    [3]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Onbaşlı M C, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [4]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 800439Google Scholar

    [5]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [6]

    Trier F, Noël P, Kim J V, Attané J P, Vila L, Bibes M 2021 Nat. Rev. Mater. 7 258Google Scholar

    [7]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57Google Scholar

    [8]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [9]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [10]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [11]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [12]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [13]

    Itoh S, Endoh Y, Yokoo T, Ibuka S, Park J G, Kaneko Y, Takahashi K S, Tokura Y, Nagaosa N 2016 Nat. Commun. 7 11788Google Scholar

    [14]

    Jadaun P, Register L F, Banerjee S K 2020 Proc. Natl. Acad. Sci. U.S.A. 117 11878Google Scholar

    [15]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [16]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [17]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, Jarillo-Herrero P 2019 Nature 565 337Google Scholar

    [18]

    He P, Zhang S S, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495Google Scholar

    [19]

    He P, Zhang S S, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801Google Scholar

    [20]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [21]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [22]

    Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601Google Scholar

    [23]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [24]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [25]

    Yoon J, Lee S W, Kwon J H, Lee J M, Son J, Qiu X, Lee K J, Yang H 2017 Sci. Adv. 3 e1603099Google Scholar

    [26]

    Liu Y T, Huang C C, Chen K H, Huang Y H, Tsai C C, Chang T Y, Pai C F 2021 Phys. Rev. Appl. 16 024021Google Scholar

    [27]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039Google Scholar

    [28]

    Pai Y Y, Tylan-Tyler A, Irvin P, Levy J 2018 Rep. Prog. Phys. 81 036503Google Scholar

    [29]

    Benthem K V, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar

    [30]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [31]

    Stemmer S, James Allen S 2014 Annu. Rev. Mater. Sci. 44 151Google Scholar

    [32]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [33]

    Trier F, Prawiroatmodjo G E, Zhong Z, Christensen D V, von Soosten M, Bhowmik A, Lastra J M, Chen Y, Jespersen T S, Pryds N 2016 Phys. Rev. Lett. 117 096804Google Scholar

    [34]

    Vaz D C, Noel P, Johansson A, Gobel B, Bruno F Y, Singh G, McKeown-Walker S, Trier F, Vicente-Arche L M, Sander A, Valencia S, Bruneel P, Vivek M, Gabay M, Bergeal N, Baumberger F, Okuno H, Barthelemy A, Fert A, Vila L, Mertig I, Attane J P, Bibes M 2019 Nat. Mater. 18 1187Google Scholar

    [35]

    King P D, McKeown Walker S, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S K, Meevasana W, Bahramy M S, Baumberger F 2014 Nat. Commun. 5 3414Google Scholar

    [36]

    Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y 2010 Phys. Rev. Lett. 104 126802Google Scholar

    [37]

    Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone J M 2010 Phys. Rev. Lett. 104 126803Google Scholar

    [38]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sanchez J C, Vaz D C, Naganuma H, Sicoli G, Attane J P, Jamet M, Jacquet E, George J M, Barthelemy A, Jaffres H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [39]

    Kaneta-Takada S, Kitamura M, Arai S, Arai T, Okano R, Anh L D, Endo T, Horiba K, Kumigashira H, Kobayashi M, Seki M, Tabata H, Tanaka M, Ohya S 2022 Nat. Commun. 13 5631Google Scholar

    [40]

    Noel P, Trier F, Vicente Arche L M, Brehin J, Vaz D C, Garcia V, Fusil S, Barthelemy A, Vila L, Bibes M, Attane J P 2020 Nature 580 483Google Scholar

    [41]

    Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T, Yang H 2017 Nano Lett. 17 7659Google Scholar

    [42]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603Google Scholar

    [43]

    Jin M J, Moon S Y, Park J, Modepalli V, Jo J, Kim S I, Koo H C, Min B C, Lee H W, Baek S H, Yoo J W 2017 Nano Lett. 17 36Google Scholar

    [44]

    Trier F, Vaz D C, Bruneel P, Noel P, Fert A, Vila L, Attane J P, Barthelemy A, Gabay M, Jaffres H, Bibes M 2020 Nano Lett. 20 395Google Scholar

    [45]

    Grigera S A, Gegenwart P, Borzi R A, Weickert F, Schofield A J, Perry R S, Tayama T, Sakakibara T, Maeno Y, Green A G, Mackenzie A P 2004 Science 306 1154Google Scholar

    [46]

    Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H, Sigrist M 1998 Nature 394 558Google Scholar

    [47]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, Beasley M R 2012 Rev. Mod. Phys. 84 253Google Scholar

    [48]

    Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [49]

    Mathieu R, Asamitsu A, Yamada H, Takahashi K S, Kawasaki M, Fang Z, Nagaosa N, Tokura Y 2004 Phys. Rev. Lett. 93 016602Google Scholar

    [50]

    Chen Y, Bergman D L, Burkov A A 2013 Phys. Rev. B 88 125110Google Scholar

    [51]

    Takiguchi K, Wakabayashi Y K, Irie H, Krockenberger Y, Otsuka T, Sawada H, Nikolaev S A, Das H, Tanaka M, Taniyasu Y, Yamamoto H 2020 Nat. Commun. 11 4969Google Scholar

    [52]

    Lin W, Liu L, Liu Q, Li L, Shu X, Li C, Xie Q, Jiang P, Zheng X, Guo R, Lim Z, Zeng S, Zhou G, Wang H, Zhou J, Yang P, Ariando, Pennycook S J, Xu X, Zhong Z, Wang Z, Chen J 2021 Adv. Mater. 33 2101316Google Scholar

    [53]

    Tian D, Liu Z, Shen S, Li Z, Zhou Y, Liu H, Chen H, Yu P 2021 Proc. Natl. Acad. Sci. U.S.A. 118 2101946118Google Scholar

    [54]

    Haidar S M, Shiomi Y, Lustikova J, Saitoh E 2015 Appl. Phys. Lett. 107 152408Google Scholar

    [55]

    Richter T, Paleschke M, Wahler M, Heyroth F, Deniz H, Hesse D, Schmidt G 2017 Phys. Rev. B 96 184407Google Scholar

    [56]

    Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [57]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [58]

    Ou Y, Wang Z, Chang C S, Nair H P, Paik H, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [59]

    Zhou J, Shu X, Lin W, Shao D F, Chen S, Liu L, Yang P, Tsymbal E Y, Chen J 2021 Adv. Mater. 33 2007114Google Scholar

    [60]

    Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G, Han X 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [61]

    Li S, Lao B, Lu Z, Zheng X, Zhao K, Gong L, Tang T, Wu K, Li R W, Wang Z 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [62]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402Google Scholar

    [63]

    Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C, Noh T W 2008 Phys. Rev. Lett. 101 226402Google Scholar

    [64]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [65]

    Kim H S, Chen Y, Kee H Y 2015 Phys. Rev. B 91 235103Google Scholar

    [66]

    Nie Y F, King P D, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P, Xie L, Pan X, Fennie C J, Schlom D G, Shen K M 2015 Phys. Rev. Lett. 114 016401Google Scholar

    [67]

    Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z, Shen D W 2016 Sci. Rep. 6 30309Google Scholar

    [68]

    Liu J, Kriegner D, Horak L, Puggioni D, Rayan Serrao C, Chen R, Yi D, Frontera C, Holy V, Vishwanath A, Rondinelli J M, Marti X, Ramesh R 2016 Phys. Rev. B 93 085118Google Scholar

    [69]

    Fujioka J, Yamada R, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y 2019 Nat. Commun. 10 362Google Scholar

    [70]

    Patri A S, Hwang K, Lee H W, Kim Y B 2018 Sci. Rep. 8 8052Google Scholar

    [71]

    Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593Google Scholar

    [72]

    Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801Google Scholar

    [73]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski M S, Kim Y B, Ralph D C, Eom C B 2019 Proc. Natl. Acad. Sci. U.S.A. 116 16186Google Scholar

    [74]

    Everhardt A S, Dc M, Huang X, Sayed S, Gosavi T A, Tang Y, Lin C C, Manipatruni S, Young I A, Datta S, Wang J P, Ramesh R 2019 Phys. Rev. Mater. 3 051201Google Scholar

    [75]

    Liu L, Qin Q, Lin W, Li C, Xie Q, He S, Shu X, Zhou C, Lim Z, Yu J, Lu W, Li M, Yan X, Pennycook S J, Chen J 2019 Nat. Nanotechnol. 14 939Google Scholar

    [76]

    Wang H, Meng K Y, Zhang P, Hou J T, Finley J, Han J, Yang F, Liu L 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [77]

    Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica V A, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph D C, Ramesh R 2021 Adv. Mater. 33 e2008269Google Scholar

    [78]

    Liu L, Zhou G, Shu X, Li C, Lin W, Ren L, Zhou C, Zhao T, Guo R, Xie Q, Wang H, Zhou J, Yang P, Pennycook S J, Xu X, Chen J 2022 Phys. Rev. B 105 144419Google Scholar

    [79]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [80]

    Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [81]

    Amin V P, Stiles M D 2016 Phys. Rev. B 94 104420Google Scholar

    [82]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [83]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [84]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [85]

    Ren Z, Lao B, Zheng X, Liao L, Lu Z, Li S, Yang Y, Cao B, Wen L, Zhao K, Wang L, Bai X, Hao X, Liao Z, Wang Z, Li R W 2022 ACS Appl. Mater. Interfaces 14 15407Google Scholar

    [86]

    Nakamura H, Kimura T 2009 Phys. Rev. B 80 121308Google Scholar

    [87]

    King P D, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F, Meevasana W 2012 Phys. Rev. Lett. 108 117602Google Scholar

    [88]

    Santander-Syro A F, Bareille C, Fortuna F, Copie O, Gabay M, Bertran F, Taleb-Ibrahimi A, Le Fèvre P, Herranz G, Reyren N, Bibes M, Barthélémy A, Lecoeur P, Guevara J, Rozenberg M J 2012 Phys. Rev. B 86 121107Google Scholar

    [89]

    Bruno F Y, McKeown Walker S, Riccò S, la Torre A, Wang Z, Tamai A, Kim T K, Hoesch M, Bahramy M S, Baumberger F 2019 Adv. Electron. Mater. 5 1800860Google Scholar

    [90]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [91]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [92]

    Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104Google Scholar

    [93]

    Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B, Sun J 2017 ACS Appl. Mater. Interfaces 9 36456Google Scholar

    [94]

    Zhang H, Yan X, Zhang X, Wang S, Xiong C, Zhang H, Qi S, Zhang J, Han F, Wu N, Liu B, Chen Y, Shen B, Sun J 2019 ACS Nano 13 609Google Scholar

    [95]

    Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W, Sun J 2018 Phys. Rev. Lett. 121 116803Google Scholar

    [96]

    Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874Google Scholar

    [97]

    Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y, Hu F, Cai J, Shen B, Han W, Sun J 2019 Nano Lett. 19 1605Google Scholar

    [98]

    Vicente-Arche L M, Brehin J, Varotto S, Cosset-Cheneau M, Mallik S, Salazar R, Noel P, Vaz D C, Trier F, Bhattacharya S, Sander A, Le Fevre P, Bertran F, Saiz G, Menard G, Bergeal N, Barthelemy A, Li H, Lin C C, Nikonov D E, Young I A, Rault J E, Vila L, Attane J P, Bibes M 2021 Adv. Mater. 33 e2102102Google Scholar

    [99]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [100]

    Ramesh R, Schlom D G 2019 Nat. Rev. Mater. 4 257Google Scholar

    [101]

    Zheng Z, Zhang Y, Lopez-Dominguez V, Sanchez-Tejerina L, Shi J, Feng X, Chen L, Wang Z, Zhang Z, Zhang K, Hong B, Xu Y, Zhang Y, Carpentieri M, Fert A, Finocchio G, Zhao W, Khalili Amiri P 2021 Nat. Commun. 12 4555Google Scholar

    [102]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [103]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [104]

    He P, Walker S M, Zhang S S, Bruno F Y, Bahramy M S, Lee J M, Ramaswamy R, Cai K, Heinonen O, Vignale G, Baumberger F, Yang H 2018 Phys. Rev. Lett. 120 266802Google Scholar

    [105]

    Lee J H, Harada T, Trier F, Marcano L, Godel F, Valencia S, Tsukazaki A, Bibes M 2021 Nano Lett. 21 8687Google Scholar

    [106]

    Gonzalez-Hernandez R, Smejkal L, Vyborny K, Yahagi Y, Sinova J, Jungwirth T, Zelezny J 2021 Phys. Rev. Lett. 126 127701Google Scholar

    [107]

    Bose A, Schreiber N J, Jain R, Shao D F, Nair H P, Sun J, Zhang X S, Muller D A, Tsymbal E Y, Schlom D G, Ralph D C 2022 Nat. Electron. 5 267Google Scholar

    [108]

    Bai H, Han L, Feng X Y, Zhou Y J, Su R X, Wang Q, Liao L Y, Zhu W X, Chen X Z, Pan F, Fan X L, Song C 2022 Phys. Rev. Lett. 128 197202Google Scholar

    [109]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 024428Google Scholar

    [110]

    Gomonay O, Jungwirth T, Sinova J 2016 Phys. Rev. Lett. 117 017202Google Scholar

    [111]

    Zhu D, Zhao W 2020 Phys. Rev. Appl. 13 044078Google Scholar

    [112]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [113]

    Dyrdal A, Barnas J, Fert A 2020 Phys. Rev. Lett. 124 046802Google Scholar

    [114]

    Yu X Q, Zhu Z G, Su G 2021 Phys. Rev. B 103 035410Google Scholar

    [115]

    Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Eda G, Liang G, Yang H 2021 Nat. Nanotechnol. 16 421Google Scholar

    [116]

    Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415Google Scholar

    [117]

    Lao B, Liu P, Zheng X, Lu Z, Li S, Zhao K, Gong L, Tang T, Wu K, Shi YG, Sun Y, Chen X Q, Li R W, Wang Z 2022 Phys. Rev. B 106 L220409Google Scholar

  • [1] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体. 物理学报, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [2] 赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明. SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控. 物理学报, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [3] 苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋. Te掺杂对二维InSe抗氧化性以及电子结构的影响. 物理学报, 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [4] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究. 物理学报, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [5] 徐佳楠, 陈焕铭, 潘凤春, 林雪玲, 马治, 陈治鹏. 氧化锌掺钡的电子结构及其铁电性能研究. 物理学报, 2018, 67(10): 107701. doi: 10.7498/aps.67.20172263
    [6] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [7] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [8] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [9] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [10] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究. 物理学报, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [11] 濮春英, 唐鑫, 吕海峰, 张庆瑜. 掺Cd氧化锌的电子结构及相结构稳定性的第一性原理研究. 物理学报, 2011, 60(3): 037101. doi: 10.7498/aps.60.037101
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [14] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [15] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [16] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究. 物理学报, 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [17] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究. 物理学报, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [20] 谭明秋, 陶向明, 何军辉. SrRuO3的电子结构与磁性研究. 物理学报, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
计量
  • 文章访问数:  7071
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 修回日期:  2022-12-20
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-05-05

/

返回文章
返回