搜索

x
中国物理学会期刊

反应扩散系统中交叉扩散引发的图灵斑图之间的转变

CSTR: 32037.14.aps.72.20230333

Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems

CSTR: 32037.14.aps.72.20230333
PDF
HTML
导出引用
  • 交叉扩散是影响图灵斑图形成和转变的重要因素之一. 本文在反应扩散布鲁塞尔模型中引入交叉扩散项, 首先对其进行线性分析和弱非线性分析, 然后数值研究了交叉扩散的方向性以及浓度依赖性在图灵斑图转变过程中的作用. 在单向交叉扩散情况下, 交叉扩散的方向直接决定了斑图转变的次序. 阻滞子向活化子的交叉扩散会导致系统逐渐远离初级分岔点, 从而引发图灵斑图的正向转变; 与之相反, 活化子向阻滞子的交叉扩散会导致系统逐渐靠近初级分岔点, 从而引发图灵斑图的反向转变. 对称双向交叉扩散下, 阻滞子向活化子的交叉扩散效应要强于活化子向阻滞子的交叉扩散. 交叉扩散系数除了与自身浓度相关外, 还与其他物质浓度相关. 研究发现浓度依赖交叉扩散也会影响图灵斑图的转变方向. 当扩散系数 D_uv 线性依赖阻滞子浓度 v 变化时, 随着浓度线性调节参数 \beta 的增大, 引发图灵斑图正向转变; 相反, 当扩散系数 D_vu 线性依赖活化子浓度 u 变化时, 引发图灵斑图的反向转变.

     

    Cross-diffusion is one of the most important factors affecting the formation and transition of Turing patterns in reaction diffusion systems. In this paper, cross-diffusion is introduced into a reaction diffusion Brusselator model to investigate the effects of the directivity and density-dependence of cross-diffusion on Turing pattern transition. Turing space is obtained by the standard linear stability analysis, and the amplitude equations are derived based on weakly nonlinear method, by which Turing pattern selection can be determined theoretically. It is found that the degree of deviation from the primary Turing bifurcation point plays an important role in determining the process of pattern selection in the Turing region. As the deviation from onset is increased, the system exhibits a series of pattern transitions from homogenous state to honeycomb hexagonal pattern, to stripe pattern, and then to hexagonal spot pattern. In the case of one-way cross-diffusion, the direction of cross-diffusion determines the order of Turing pattern transition. The cross-diffusion from the inhibitor to the activator enhances the Turing mode and drives the system far away from the primary bifurcation point, resulting in the forward order of Turing pattern transition. On the contrary, the cross-diffusion from the activator to the inhibitor suppresses the Turing mode and forces the pattern transition in a reverse order. In the case of two-way cross-diffusion, the cross-diffusion effect from inhibitors to activators is stronger than that from activators to inhibitors with the same diffusion coefficient. Essentially, the cross-diffusion coefficient is dependent on not only the local concentration of species itself, but also the concentrations of other species due to their interaction. It is found that concentration dependent cross diffusion also affects the transformation direction of Turing pattern. When the diffusion coefficient D_uv is linearly dependent on the concentration of retarders, the positive transformation of the Turing pattern is induced with the increase of the concentration linear adjustment parameter \beta . On the contrary, when the diffusion coefficient D_vu is linearly dependent on the concentration of active particles, the reverse transformation of the Turing pattern is induced. The numerical simulation results are consistent with the theoretical analysis.

     

    目录

    /

    返回文章
    返回