-
在微波无线输能领域中, 如何实现多目标点的电磁波可调控聚焦是一个值得关注的问题. 本文提出了一种基于时间反演多径环境下的多目标电磁波聚焦的新方法. 该方法基于多个输出之间的信道相关性, 将输入和输出节点之间的信道信息进行提取、筛选、加权和重构后在单个发送端上重建反演信号, 利用时间反演的空间选择特性实现均衡的电磁波聚焦. 基于这种方法, 设计了两组在多径环境下的实验. 实验结果表明, 通过这种方法可以使弱相关模型下不同输出端口获得均衡稳定的聚焦峰, 在强相关模型下使不同输出端口的分辨效果进一步提升. 此外, 6个额外的实验验证了所提出的方法可以在弱相关或强相关的单输入多输出信道模型下, 通过改变不同的权值灵活地调整不同接收端的输出峰值电压比.Achieving tunable focus of electromagnetic field energy at multiple target points is a critical challenge in the wireless power transfer (WPT) domain. In order to solve this problem, some techniques such as optimal constrained power focusing (OCPF) and time reversal (TR) have been proposed. The former presents limited practical applicability while the latter is noteworthy for its adaptive spatiotemporal synchronous focusing characteristics. However, the time reversal mirror (TRM) method necessitates intricate pretesting and has highly complex systems. In this study, we introduce a novel channel processing method, named channel extraction, selection, weighting, and reconstruction (CESWR), to attain balanced power distribution for multiple users, featuring low complexity, high computability, and rapid convergence. Unlike the traditional TR approach, our proposed method, based on channel correlation considerations, filters the channel impulse response (CIR) for multiple targets, dividing them into distinct characteristic and similar components for each target. This method ensures focused generation at both receiving ends while facilitating high-precision regulation of the peak voltage of the received signal. Furthermore, this study implements a rigorous examination of the linearity intrinsic to the proposed method, explicating a singular correspondence between the tuning of theoretical weights and the resultant outcomes. In order to verify the efficacy of this method, we construct a single-input multiple-output time-reversal cavity (SIMO-TRC) system. Subsequent experiments conducted for both loosely and tightly correlated models, provide invaluable insights. Evidently, in the loosely correlated model, the CESWR method exhibits proficiency in attaining a peak voltage ratio (PVR) of nearly 1.00 at the two receivers, with a minuscule numerical discrepancy of merely
$8 \times {10^{ - 6}}$ mV. In stark contrast, under the tightly correlated model, the CESWR method demonstrates an enhanced ability to differentiate between two targets, thus offering a noticeable improvement over the classic single-target TR method.-
Keywords:
- time-reversal /
- channel processing /
- multi-target focusing
[1] Wang B, Wu Y, Han F, Yang Y H, Liu K R 2011 IEEE J. Sel. Areas Commun. 29 1698Google Scholar
[2] Han F, Yang Y H, Wang B, Wu Y, Liu K R 2012 IEEE Global Telecommunications Conference-GLOBECOM 2011 Houston, TX, USA, December 5–9, 2011 p1
[3] Nguyen H T, Andersen J B, Pedersen G F, Kyritsi P, Eggers P C 2006 IEEE Trans. Wireless Commun. 5 2242Google Scholar
[4] Zhao D, Zhu M 2006 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar
[5] Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar
[6] Li B, Liu S, Zhang H L, Hu B J, Zhao D, Huang Y 2019 IEEE Access 7 114897Google Scholar
[7] Bellizzi G G, Iero D A, Crocco L, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar
[8] Iero D A, Crocco L, Isernia T 2013 IEEE Trans. Antennas Propag. 62 814Google Scholar
[9] Lerosey G, De Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar
[10] Carminati R, Pierrat R, De Rosny J, Fink M 2007 Opt. Lett. 32 3107Google Scholar
[11] Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar
[12] Hong S, Park H 2018 Electron. Lett. 54 768Google Scholar
[13] Drikas Z B, Addissie B D, Mendez V M, Raman S 2020 IEEE Trans. Microwave Theory Tech. 68 3355Google Scholar
[14] Li B, Zhang Q, Zhao D, Yang Y 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) Beijing, China, September 1–4, 2022 p356
[15] Drikas Z B, Addissie B D, Mendez V M, Raman S 2021 IEEE Microwave Wireless Compon. Lett. 32 177Google Scholar
[16] Wang K, Shao W, Ou H, Wang B Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 2828Google Scholar
[17] Razzaghi R, Lugrin G, Manesh H, Romero C, Paolone M, Rachidi F 2013 IEEE Trans. Power Delivery 28 1663Google Scholar
[18] Codino A, Wang Z, Razzaghi R, Paolone M, Rachidi F 2017 IEEE Trans. Electromagn. Compat. 59 1601Google Scholar
[19] Sun J, Yang Q, Cui H, Ran J, Liu H 2021 IEEE Trans. Electromagn. Compat. 63 1921Google Scholar
[20] Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar
[21] Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar
[22] 张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar
Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar
[23] Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 6343Google Scholar
[24] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫 2022 物理学报 71 024101Google Scholar
Lu X C, Qiu Y, Tian J, Wang H B, Jiang L, Chen X 2022 Acta Phys. Sin. 71 024101Google Scholar
[25] Cramer R M, Scholtz R A, Win M Z 2002 IEEE Trans. Antennas Propag. 50 561Google Scholar
[26] Lerosey G, De Rosny J, Tourin A, Fink M 2007 Science 315 1120Google Scholar
-
图 4 信道提取和筛选后的结果 (a) Rx1的接收信号和Rx2的接收信号; (b) 信道提取结果(RMSE = 0.2%); (c) 信道筛选后Rx1和Rx2各自的特征部分; (d) 信道筛选后的相似部分
Fig. 4. Receive signals after transmitting the pulse and processing results: (a) Receive signals of Rx1 plotted in blue and Rx2 plotted in yellow; (b) channel extraction results (RMSE = 0.2%); (c) characteristic parts after channel selecting; (d) the similar part after channel selecting.
表 1 不同的加权系数对应的峰值电压比
Table 1. Peak voltage ratio of different coefficiesnts
峰值电压比 α β 1.000 0.20 0.50 1.381 0.15 0.50 0.696 0.25 0.50 0.766 0.20 0.40 1.262 0.20 0.60 0.367 1.00 1.00 表 2 强相关实验峰值电压比和加权系数结果对比
Table 2. Comparison of peak voltage ratio and coefficients in tight-correlation experiments.
峰值电压比 α β 3.741 0 1.00 0.466 1.00 0 3.812 0.10 0.90 3.816 0.08 0.92 0.423 0.90 0.10 0.418 0.92 0.08 -
[1] Wang B, Wu Y, Han F, Yang Y H, Liu K R 2011 IEEE J. Sel. Areas Commun. 29 1698Google Scholar
[2] Han F, Yang Y H, Wang B, Wu Y, Liu K R 2012 IEEE Global Telecommunications Conference-GLOBECOM 2011 Houston, TX, USA, December 5–9, 2011 p1
[3] Nguyen H T, Andersen J B, Pedersen G F, Kyritsi P, Eggers P C 2006 IEEE Trans. Wireless Commun. 5 2242Google Scholar
[4] Zhao D, Zhu M 2006 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar
[5] Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar
[6] Li B, Liu S, Zhang H L, Hu B J, Zhao D, Huang Y 2019 IEEE Access 7 114897Google Scholar
[7] Bellizzi G G, Iero D A, Crocco L, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar
[8] Iero D A, Crocco L, Isernia T 2013 IEEE Trans. Antennas Propag. 62 814Google Scholar
[9] Lerosey G, De Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar
[10] Carminati R, Pierrat R, De Rosny J, Fink M 2007 Opt. Lett. 32 3107Google Scholar
[11] Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar
[12] Hong S, Park H 2018 Electron. Lett. 54 768Google Scholar
[13] Drikas Z B, Addissie B D, Mendez V M, Raman S 2020 IEEE Trans. Microwave Theory Tech. 68 3355Google Scholar
[14] Li B, Zhang Q, Zhao D, Yang Y 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) Beijing, China, September 1–4, 2022 p356
[15] Drikas Z B, Addissie B D, Mendez V M, Raman S 2021 IEEE Microwave Wireless Compon. Lett. 32 177Google Scholar
[16] Wang K, Shao W, Ou H, Wang B Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 2828Google Scholar
[17] Razzaghi R, Lugrin G, Manesh H, Romero C, Paolone M, Rachidi F 2013 IEEE Trans. Power Delivery 28 1663Google Scholar
[18] Codino A, Wang Z, Razzaghi R, Paolone M, Rachidi F 2017 IEEE Trans. Electromagn. Compat. 59 1601Google Scholar
[19] Sun J, Yang Q, Cui H, Ran J, Liu H 2021 IEEE Trans. Electromagn. Compat. 63 1921Google Scholar
[20] Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar
[21] Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar
[22] 张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar
Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar
[23] Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 6343Google Scholar
[24] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫 2022 物理学报 71 024101Google Scholar
Lu X C, Qiu Y, Tian J, Wang H B, Jiang L, Chen X 2022 Acta Phys. Sin. 71 024101Google Scholar
[25] Cramer R M, Scholtz R A, Win M Z 2002 IEEE Trans. Antennas Propag. 50 561Google Scholar
[26] Lerosey G, De Rosny J, Tourin A, Fink M 2007 Science 315 1120Google Scholar
计量
- 文章访问数: 2306
- PDF下载量: 68
- 被引次数: 0