搜索

x
中国物理学会期刊

纳米“热点”系统中的梯度热导率

CSTR: 32037.14.aps.72.20230687

Graded thermal conductivity in nano “hot spot” systems

CSTR: 32037.14.aps.72.20230687
PDF
HTML
导出引用
  • 纳米“热点”系统中的梯度变化热导率, 是纳米尺度热传导中的新现象. 背后的新机理, 为解决纳米器件散热等工程问题提供理论基础. 首先回顾了近期在纳米体系中发现的热传导新现象. 然后, 重点围绕“热点”梯度热导率, 阐述了不同维度体系的梯度热导率变化规律. 并根据原子振动模式与声子散射的变化, 阐释了梯度热导率的物理机制. 最后, 概述了纳米“热点”的梯度热导率特性给纳米器件散热带来的新挑战和新机遇, 并对未来在该方向研究进行展望.

     

    The graded thermal conductivity in nanoscale “hot spot” system is a new phenomenon in nanoscale heat conduction. It is found that the thermal conductivity is no longer uniform, and the thermal conductivity gradually increases from the inside to the outside in the radial direction, which no longer obeys Fourier’s law of thermal conductivity. An in-depth understanding of the mechanism of the graded thermal conductivity can provide a theoretical basis for solving engineering problems such as heat dissipation of nanochip. This paper first reviews the new phenomenon of heat conduction recently discovered in nanosystem, then, focuses on the graded thermal conductivity in the “hot spot” system, and expounds the variation law of the graded thermal conductivity in different dimensional systems. According to the changes of atomic vibration mode and phonon scattering, the physical mechanism of the graded thermal conductivity is explained. Finally, the new challenges and opportunities brought by the graded thermal conductivity characteristics of nano “hot spot” to the heat dissipation of nanodevices are summarized, and the future research in this direction is also prospected.

     

    目录

    /

    返回文章
    返回